
 
34 

THE BIO-FEEDBACK SYSTEMS DESIGN APPROACH AT THE "TOR VERGATA" 
UNIVERSITY

 
Luigi Bianchi1,4, Fabio Babiloni2, Marco Arrivas, Patrizio Bollero, Maria Grazia Marciani 1,3 

1  
2  

3  
4 Brainware, Rome, ITALY 

The objective of this research was to realize an efficient and scalable C++ Bio-Feedback software 
framework that could be used in a wide range of pathological situations thus minimizing the time spent to 
build a completely new system. 

One of the main problems encountered in the development of computer-based systems for handicapped 
people is that it is very difficult to optimize them in a wide range of situations. This generally occurs because 
every patient has residual capabilities that are specific to his condition and that make him in some way 
unique. Moreover, very often, different pathologies are treated using different approaches and tools: 
sometimes the processing power of a PC is required while in some others it is desirable for the whole system 
to be portable and lightweight. In any case it is necessary to try to use all of the usable biological signals 

It must be noted that different approaches (e.g. EP, EEG, etc) could require targeting different platforms: 
the Microsoft Windows OS family for example (with the exception of Windows CE/Embedded) does not 
provide a Real-Time environment and several unpredictable delays (of the order of tenths of milliseconds) 
can be introduced at different stages. This is probably not a problem in EEG based applications, but it could 
be in EP ones. Moreover, in general, a Windows based solution could easily provide many features, such 
as text to speech capabilities, but, on the other side, it still does not allow to build wearable and cheap 
systems. 

However, even if the nature of the utilized signals may vary among different pathological situations, 
the way in which a biofeedback system works is quite stereotyped: after the data have been acquired, there 
is a DSP pre-processing stage that performs some basic operations on the biological input signals, then a 
classification stage in which some features are extracted and manifested in some way to the user and 
eventually recognized as one of the subject voluntarily controlled activities, and, at the end, a stage in which 
a task can be executed. Finally it is very frequent that these systems provide different operating modalities 
such as training, testing, setup, and running. 

This is a situation in which an object oriented programming approach reaches his best results: in our 
case it is possible to describe the operative flow that is common to all the biofeedback applications leaving 
to be defined only those aspects that are specific to the single implementation, such as the algorithms and 
the classification rules. Then, in a separate step, several systems can be realized just defining the points that 
are left unspecified. 

It is important to notice that the proposed solution does not make any assumption on both the operating 
system and the hardware used. For this reason all the formats of the generated files were based on the XML 
technology (eXtensible Markup Language), that is portable across virtually any OS, and that also allows to 
extend the file format without loosing backward compatibility. This is a key issue when data files need to 
be shared across different laboratories or put on the Web. 

This framework was used to develop three different BCI systems. Each of them was fully implemented 
using no more than 40 lines of C++ code. The same source code was compiled under the following operating 
systems: Windows 98/2000/XP (using Borland C++ Builder 5, Microsoft Visual C 6.0 and GCC 3.1), 
Windows CE 3.0 (using Microsoft Visual C++ for Embedded Visual Tools) and Linux (using GCC 3.1).  



 
35 

More details and resources can be found at http://www.luigibianchi.com/bci.htm 


