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Rensselaerville, New York       

Program and Abstracts 

Schedule Quick Reference 

 

 

Wednesday, June 12, 2002 
3:00 - 7:00 pm    Arrival and registration 

 Guggenheim Lobby 

5:30 - 8:00     Opening 

reception and dinner 

 Weathervane Restaurant 

8:00 on    Panel 

planning meetings 

 See program 

Thursday, June 13 
6:30 - 8:00 am    Breakfast   

 Weathervane Restaurant 

8:15 - 10:30   

 Welcome and 12 

presentations Guggenheim 

Auditorium 

10:30 - 11:00    Break 

   

 Guggenheim Lobby 

11:00 - 12:30 pm   9 Presentations

  

 Guggenheim 

Auditorium 

12:30- 2:30     Lunch    

 Weathervane Restaurant  

2:30 - 3:30    7 

Presentations  

 Guggenheim 

Auditorium 

3:30 - 4:00    Break 
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 Guggenheim Lobby 

4:00 - 5:30    9 

Presentations   

 Guggenheim 

Auditorium 

5:30 - 7:15    Cocktails and dinner   Weathervane Restaurant 

7:30 - 8:30    Keynote 

address 

 Guggenheim 

Auditorium 

8:30 on    Panel 

planning meetings 

 See program 

Friday, June 14 
6:30 - 8:15 am    Breakfast   

 Weathervane Restaurant 

8:30 - 9:15    Debate I

   

 Guggenheim 

Auditorium 

9:15 - 10:15   

 Discussion session 1  

  Guggenheim 

Auditorium 

10:15 - 10:45    Break 

   

 Guggenheim Lobby 

10:45 - 11:45 am   Discussion 

session 2  

 Guggenheim 

Auditorium 

11:45 - 4:00 pm   Packed lunch 

and field trips  Depart 

from Weathervane 

4:00 - 4:45     Debate II   

 Guggenheim Auditorium 

4:45 - 5:45    

 Discussion session 3 

  Guggenheim 

Auditorium 

5:45 - 7:30    Cocktails and dinner   Weathervane Restaurant 

7:30 on    Posters and demonstrations  

 Guggenheim Master Seminar Rm 

Saturday, June 15 
6:30 - 7:30 am    Birdwatching walk   Depart from 

Weathervane 

7:00 - 8:45    Breakfast   
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 Weathervane Restaurant 

9:00 - 10:00    Discussion 

session 4   

 Guggenheim Auditorium 

10:00 - 10:45    Debate III

   

 Guggenheim Auditorium 

10:45 - 11:15     Break 

   

 Guggenheim Auditorium 

11:15 - 12:15 pm    Discussion session 

5  

 Guggenheim Auditorium

  

12:15 - 3:00     Barbeque

   

 Garden 

3:00 - 4:30    Satellite sessions   Guggenheim Auditorium 

4:30 - 5:15     Debate IV   

 Guggenheim Auditorium 

5:15 - 6:15    Discussion 

session 6  

 Guggenheim Auditorium 

6:15 - 8:00    Cocktails 

and dinner  

 Weathervane Restaurant 

8:00 on    Posters and 

demonstrations 

 Guggenheim Master 

Seminar Rm 

Sunday, June 16 
9:00 - 11:00 am   Breakfast and 

summary session

 Weathervane Restaurant 
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Sponsored by:  

National Center for Medical Rehabilitation Research, National Institutes of Health 

National Institute on Deafness and Other Communication Disorders, National Institutes of Health 

Office of Rare Diseases, National Institutes of Health 

National Institute of Neurological Disorders and Stroke, National Institutes of Health 

 

Additional support for students and fellows: 

Eastern Paralyzed Veterans Association 

Department of Defense Advanced Research Project Agency 

Whitaker Foundation 

Deutsche Forschungsgemeinschaft 

Wadsworth Center 

 

Hosted by: 

Brain-Computer Interface Project 

Wadsworth Center 

New York State Department of Health and State University of New York 
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PROGRAM 

 

Wednesday, June 12, 2002 

3:00 - 7:00 pm   Arrival and registration   Guggenheim Lobby 

5:30 - 8:00     Opening reception and dinner  Weathervane Restaurant 

8:30 on    Discussion panel meetings* 

Signals I (Heetderks)    Strauss Meeting Room 

Signals II (Trejo)    Ford Lounge 

Methods (Rymer)    Stonecrop Living Room 

Applications I (Moore)   Huyck Library 

Applications II (Weinrich)   Huyck House Board Room 

Standards (Kübler)    Stonecrop Board Room 

 

 

Thursday, June 13, 2002 

6:30 - 8:00 am   Breakfast     Weathervane Restaurant 

8:15 - 10:30 am   Welcome and presentations   Guggenheim Auditorium 

 

 

Theresa M. Vaughan and Jonathan R. Wolpaw, Wadsworth Center, NYS Dept Health & SUNY, Albany, 

NY 

Welcome (8:15 am) 

 

 

 

 

 

 

 

Brendan Z. Allison, University of California at San Diego, La Jolla, CA  

Think and spell: toward a faster, better P300 BCI (8:30 am) 

 

 

 

 

 

 

 

Florin Amzica, Laval University, Quebec, Canada 

Interactions of neurons and glial cells during the genesis of synchronous brain waves 
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Thursday, June 13, 2002 

 

 

Charles W. Anderson, Colorado State University, Fort Collins, CO 

BCI research at Colorado State University 

 

 

 

 

 

 

 

Jessica D. Bayliss, Rochester Institute of Technology, Rochester, NY 

Towards better software components for brain-computer interfaces 

 

 

 

 

 

 

 

Luigi Bianchi, University of Rome “Tor Vergata,” Rome, Italy 

The bio-feedback systems design approach at the “Tor Vergata” University 

 

 

 

 

 

 

 

Niels Birbaumer, University of Tübingen, Tübingen, Germany 

Communication with slow cortical potentials (SCP) 

 

 

 

 

 

 

 

Gary E. Birch and Steven G. Mason, Neil Squire Foundation, Vancouver, Canada 

The Neil Squire Foundation brain-computer interface laboratory 
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Thursday, June 13, 2002 

 

 

Benjamin Blankertz, Intelligent Data Analysis Group, Fraunhofer-FIRST, Berlin, Germany 

Machine-learning for extracting neuronal signatures of natural motor commands from single-trial muti-

channel EEG data in untrained subjects 

 

 

 

 

 

 

 

John K. Chapin, SUNY Health Science Center, Brooklyn, NY 

Closed loop brain-machine interfaces 

 

 

 

 

 

 

 

Febo Cincotti, Santa Lucia Foundation, Rome, Italy 

Development and applications of BCI at Santa Lucia Foundation 

 

 

 

 

 

 

 

Bruce H. Dobkin, Reed Neurologic Research Center, UCLA, Los Angeles, CA 

Spinal and cortical plasticity induced by practice after stroke and spinal cord injury 

 

 

 

 

 

 

 

Emanuel Donchin, University of South Florida, Tampa, FL 

Unlocking the locked in:  progress in brain-computer interfaces  
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Thursday, June 13, 2002 

10:30 - 11:00 am   Break      Guggenheim Lobby 

11:00 - 12:15 pm   Presentations continue   Guggenheim Auditorium 
 

 

John P. Donoghue, Brown University, Providence, RI 

Intercortical motorneural prosthetic devices 

 

 

 

 

 

 

 

Gyongyi Gaal, Neuroprosthesis Research Organization, Brooklyn, NY 

Adaptive control of reaching for neuroprostheses 

 

 

 

 

 

 

 

Shangkai Gao, Tsinghua University, Beijing, China 

The SSVEP-based BCI system with high transfer rate  

 

 

 

 

 

 

 

Alan Gevins, San Franciso Brain Research Institute and Sam Technology, Inc., San Francisco, CA 

On-line measurement of mental workload  

 

 

 

 

 

 

 

Christoph Guger, Guger Technologies, OEG, Graz, Austria 
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Biosignal processing environment for an EEG-based brain-computer interface 

 

 

 

 

 

Thursday, June 13, 2002 

 

 

William Heetderks, National Institute of Neurological Disorders and Stroke, Bethesda, MD 

Brain communication interface research at the NINDS 

 

 

 

 

 

 

 

Jack W. Judy, University of California at Los Angeles, Los Angeles, CA 

UCLA Neuroengineering Program 

 

 

 

 

 

 

 

Phillip R. Kennedy, Neural Signals, Inc., Atlanta, GA 

The choice of brain-computer interface technique 

 

 

 

 

 

 

 

Daryl R. Kipke, University of Michigan, Ann Arbor, MI 

Development of implantable microelectrode arrays at the Neural Engineering Lab (NEL) at the University of Michigan 

 

 

 

 

 

 

 

12:30 - 2:30 pm    Lunch     Weathervane Restaurant  
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Thursday, June 13, 2002 

2:30 - 3:30 pm   Presentations continue   Guggenheim Auditorium 

 

 

Michael Kositsky, Northwestern University, Chicago, IL 

Connecting brain tissue to robots: development of a hybrid system for studying neural plasticity 

 

 

 

 

 

 

 

Simon P. Levine, University of Michigan, Ann Arbor, MI 

University of Michigan direct brain interface:  2002 update 

 

 

 

 

 

 

 

José del R. Millán, Joint Research Centre of the EC and Swiss Commission, Fed Inst of Tech, Lausanne 

Asynchronous BCI and local neural classifiers  

 

 

 

 

 

 

 

Mohammed M. Mojarradi, California Institute of Technology, Pasadena, CA 

Challenges in the development of miniaturized, smart neuro-prostheses suitable for implanting into a brain  
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Melody M. Moore, Georgia State University, Atlanta, GA 

Human-computer interaction research at the GSU Brainlab 

 

 

 

 

 

 

Thursday, June 13, 2002 

 

 

Christa Neuper, Department of Medical Informatics, Graz, Austria 

Graz BCI: state of the art and clinical application 

 

 

 

 

 

 

 

Paul Nunez, Tulane University, New Orleans, LA 

EEG phase locking during cognitive processing 

 

 

 

 

 

 

 

3:30 - 4:00 pm   Break      Guggenheim Lobby 

4:00 - 5:30 pm   Presentations continue   Guggenheim Auditorium 

 

 

 

 

 

 

 

Lucas Parra and Paul Sajda, Sarnoff Corporation, Princeton, NJ, Columbia University, New York,NY 

Real-time EEG event detection for augmented human machine interaction  
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José C. Principe, University of Florida, Gainesville, FL 

Signal processing methodologies to model the relation between spike trains and hand movements for brain-

machine interfaces  

 

 

 

 

 

 

Thursday, June 13, 2002 

 

 

Robert N. Schmidt, Cleveland Medical Devices, Inc., Cleveland, OH   

A miniature, wireless two-channel EEG for brain-computer interface 

 

 

 

 

 

 

 

William G. Shain, Wadsworth Center, New York State Department of Health, Albany, NY 

Controlling reactive responses around neural prosthetic devices  

 

 

 

 

 

 

 

Mingui Sun, University of Pittsburgh, Pittsburgh, PA 

Solving the wireless data communication problem between brain implants and computer 

 

 

 

 

 

 

 

Peter Sykacek, Robotics Research Group, Oxford University, England 

The Oxford-Putney BCI system 
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Dawn Taylor, Arizona State University, AZ 

Training cortical cells to produce better directional control signals with and without physical limb movements 

 

 

 

 

 

 

 

Thursday, June 13, 2002 

 

 

Leonard Trejo, NASA Ames Research Center, Moffett Field, CA 

Multimodal neuroelectric human computer interface development 

 

 

 

 

 

 

 

Jonathan R. Wolpaw, Wadsworth Center, New York State Department of Health, and SUNY, Albany, NY 

The Wadsworth Center BCI Program 

 

 

 

 

 

 

 

5:30 - 7:15 pm   Cocktails and Dinner   Weathervane Restaurant 

7:30 - 8:30    Keynote address     Guggenheim Auditorium 

 

 

Fernando H. Lopes da Silva, Faculty of Sciences, University of Amsterdam, Kruislaan, Amsterdam 

EEG features as reflections of brain states 
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8:30 on    Discussion panel meetings   See page 4 

 

 

 

 

 

Friday, June 14, 2002 

6:30 - 8:15 am   Breakfast     Weathervane Restaurant 

8:30 - 9:15     Debate I     Guggenheim Auditorium 
 

 

Spikes versus Field Potentials in BCI Research and Development 

Simon Levine (Moderator), John Donoghue (Spikes), Jon Wolpaw (Field potentials) 

 

Electrophysiological recording can focus on the action potentials (spikes) produced by individual neurons or 

on the field potentials produced by populations of neurons and synapses.  Both methods have a long history 

in neuroscience research.  The discussants will debate the relative advantages and disadvantages of these two 

approaches for the laboratory development and clinical application of BCI technology. 
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Friday, June 14, 2002 

9:15 - 10:15 am   Discussion session 1    Guggenheim Auditorium 
 

 

Signals I - Discussion:  The relative advantages and disadvantages for BCI use of different brain signals 

and different signal recording technologies 
 

Bill Heetderks (Chair), Daryl Kipke, Thilo Hinterberger, Christoph Guger, Roman Rosipal, Mohammed         

Mojarradi, Lucas Parra, Florin Amzica, Paul Nunez 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10:15  - 10:45 am    Break     Guggenheim Lobby 
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Friday, June 14, 2002 

10:45 - 11:45 am   Discussion session 2    Guggenheim Auditorium 
 

 

Signals II - Discussion:  The relative advantages and disadvantages for BCI use of different brain 

signals and different signal recording technologies 
 

Len Trejo (Chair), Xiaorong Gao, Jaime Pineda, José Principe, Febo Cincotti, Michael Rudko, Paul Sajda, 

David Peterson, Barbara Whilhelm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11:45 - 4:00 pm    Packed lunch and field trips Depart from Weathervane 
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Friday, June 14, 2002 

4:00 - 4:45 pm    Debate II    Guggenheim Auditorium 

 

 

Linear versus Non-linear Methods in BCI Research 
Gary Birch (Moderator), Klaus Müller (Linear), Charles Anderson (Non-linear) 

 

Linear methods, such as multiple regression, have traditionally dominated quantitative approaches in science 

and engineering.  Recently, non-linear methods, such as neural networks, have become prominent.  The 

discussants will debate the relative advantages and disadvantages of these two classes of methods in the design, 

evaluation, and application of BCI technology. 
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Friday, June 14, 2002 

4:45 - 5:45 pm    Discussion session 3   Guggenheim Auditorium 

 

 

Methods: Alternative methods for measuring brain signals and for translating these measurements into 

communication and control commands 
 

William Zev Rymer (Chair), Gernot Müller, José Millán, Shangkai Gao, Dawn Taylor, Jessica Bayliss, Mingui 

Sun, Peter Sykacek, Benjamin Blankertz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5:45 - 7:30 pm   Cocktails and Dinner Weathervane Restaurant 

7:30 on    Demonstrations/Posters Guggenheim Master Seminar Room 
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Saturday, June 15, 2002 

7:30 - 8:45 am    Breakfast    Weathervane Restaurant 

9:00 - 10:00     Discussion session 4   Guggenheim Auditorium 

 

 

Applications I - Discussion: Identification of those applications of most practical value to users, 

facilitation of user training, and long-term support of applications 

 

Michael Weinrich (Chair), Christa Neuper, Phil Kennedy, Julie Onton, Theresa Vaughan, Lyndsey Pickup, 

David Weston, Nicola Neumann 
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Saturday, June 14, 2002 

10:00 - 10:45 am    Debate III    Guggenheim Auditorium 

 

 

Behavioral versus Cognitive Approaches to BCI Research 

Alan Gevins (Moderator), Niels Birbaumer (Behavioral), Emanuel Donchin (Cognitive) 

 

For over 100 years, two opposing approaches have dominated the study of mind and behavior:  behaviorism, 

which analyzes behavior without reference to thoughts, emotions, and other mental events; and cognitivism, 

which incorporates mental events into its analyses of behavior.  BCI research presents a new class of 

mind/behavior phenomena and is thus a new arena for the continuing clash of behavioral and cognitive view- 

points.  The discussions will debate the relative advantages and disadvantages of these two approaches for the 

understanding of BCI phenomena and for the design, evaluation, and use of BCI technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10:45 - 11:15 am    Break     Guggenheim Lobby 
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Saturday, June 15, 2002 

11:15 - 12:15 pm    Discussion session 5   Guggenheim Auditorium 
 

 

Applications II - Discussion: Identification of those applications of most practical value to users, 

facilitation of user training, and long-term support of applications 

 

Melody Moore (Chair), Brendan Allison, Michael Gibbs, Jack Judy, Bob Schmidt, Louis Quatrano, Irina          

Goncharova, Ahmed Karim, Joseph Green 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12:30 - 3:00 pm    Barbeque     Garden 
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Saturday, June 15, 2002 

3:00 - 4:30 pm    Satellite sessions   Guggenheim Auditorium 
 

 

Making it real: What the field of Human-Computer Interaction (HCI) has to offer BCI 
How do we move beyond demonstrations and ensure that this new interface technology is usable in the 

real world?  Interfacing to common devices using BCI techniques raises many design and evaluation issues.  

The mature field of Human-Computer Interaction (HCI) already has a wealth of knowledge, metrics and 

techniques, which could be exploited by our community.  The incorporation of HCI theory and methods would 

significantly impact the efficacy, usability, and therefore the acceptance, of BCI technologies in the general 

population.  We propose to introduce the community to HCI concepts and discuss how these ideas impact the 

development of real-world applications. 

Organizer: Melody Moore 

 

 

 

 

BCI Data Analysis Competition: Results, Lessons Learned and The Future 
To foster development of machine learning techniques and evaluate different algorithms for BCI systems, 

we  announced a data analysis competition at the NIPS*2001 Brain Computer Interface Workshop (December  

2001).  Three EEG data sets involving separate BCI tasks were provided: 

1. EEG self-paced key typing (courtesy of Benjamin Blankertz and Klaus-Robert Mueller, Fraunhofer FIRST, 

and Gabriel Curio, FU-Berlin).  This data set consists of 513 trials of 27 electrode EEG recordings from a 

single subject.  While sitting in a normal chair, relaxed arms resting on the table, fingers in the standard typing 

position at the computer keyboard (index fingers at 'f','j' and little fingers at 'a',';') the subject was instructed to 

press the aforementioned keys with the corresponding fingers in a self-chosen order and timing.  The task was 

to classify EEG potentials as being associated with left or right finger movement. 

2. EEG synchronized imagined movement task (courtesy of Allen Osman, University of Pennsylvania). The 

task of each of 9 subjects during the EEG Synchronized Imagined Movement data set was to imagine moving 

his or her left or right index finger in response to a highly predictable timed visual cue.  The goal of 

competition participants was to classify EEG recordings as belonging to left or right imagined movement.  

EEG was collected using 59 sensors and there were  90 trials for each subject (45 left and 45 right) 

3. Wadsworth BCI Data Set (courtesy of Gerwin Schalk, Wadsworth Center) The data set  consists of 64 

electrode EEG recordings from 3 subjects.  The task of each subject was to move a cursor on a video screen 

to 1 of 4 predetermined positions.   Each target position differed only in vertical location. Horizontal 

coordinates were identical for each target position.  The objective of this contest was to classify EEG 

recordings as belonging to the correct target position. 

We will describe the data sets  in further detail, present results from the competition and discuss lessons 

learned.  We will also have an open discussion on the general utility of such competitions for promoting 

algorithm development in BCI and identify opportunities for a future competitions. More details can be found 

at http://newton.bme.columbia.edu/competition.htm. 

Organizers:  Paul Sajda,  Lucas Parra and Klaus-Robert Müller 
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Saturday, June 15, 2002 

3:00 - 4:30 pm   Satellite sessions continued   Guggenheim Auditorium  

 

 

Training patients: a challenge for the use of brain-computer interfaces 
  Brain-computer interfaces are highly developed technical systems. However, the feasibility of BCIs for 

the target group, for example, severely disabled or brain-damaged patients, has to be considered. Training 

patients who are diagnosed with intractable neurological diseases to self-regulate their brain potentials poses 

several difficulties. The following questions will be discussed: 

1)  Which patients should be selected if there is a choice? Are there any predictors for good performance? 

2)  How to communicate with locked-in patients? How do they perceive their environment? 

3)  How to take the patient's social environment into account? Who wants the patient to be able to 

communicate? Who is going to conduct the training?  

4)  How to motivate patients for weeks and months of training during which patients have to maintain their 

effort? 

5)  Are patients with intractable neurological diseases always depressed?  

6)  In case of failure: When to stop training? 

7)  What about burn-out of research associates? 

Organizers:  Nicola Neumann & Andrea Kübler 

 

 

 

 

 

Implantable Microelectrodes for BCI Systems 
This discussion will focus on various types of microelectrode technologies to function as sensor/actuators 

for BCI systems that interface directly with the CNS for human applications.  Implantable microelectrode 

systems that are used routinely in animal models for neuroscience research provide a relatively robust 

technology base for developing human neural implants.  We expect this discussion to include both basic 

microfabricated electrodes, as well as various types of hybrid electrode technologies that involve biologically 

active agents. 

Organizers: Daryl Kipke, Justin Williams, Kevin Otto 
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Saturday, June 15, 2002 

4:30 - 5:15 pm     Debate IV    Guggenheim Auditorium 

 

 

A standard BCI framework:  Good or Bad? 

Bruce Dobkin (Moderator), Steve Mason (Good), Dennis McFarland (Bad) 

 

BCI researchers use terms for BCI system components, their inputs and outputs, and their functions and 

interactions.  The discussants will debate the advantages and disadvantages of a detailed standard framework 

for BCI development, evaluation, and application. 
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Saturday, June 15, 2002 

5:15 - 6:15 pm    Discussion session 6   Guggenheim Auditorium 

 

 

Standards - Development and adoption of appropriate standards for designing BCI studies and for 

assessing and comparing their results, both in the laboratory and in actual applications 
 

Andrea Kübler (Chair), Luigi Bianchi, Jane Huggins, Gerwin Schalk, Todd Kirby, Charles Robinson, Steven 

Helms Tillery, Daniel Moran 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6:15 - 8:00 pm   Cocktails and Dinner Weathervane Restaurant 

8:00 on    Demonstrations/Posters Guggenheim Master Seminar Room 
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Sunday, June 16, 2002 

9:00 - 11:00 am   Breakfast and summary session  Weathervane Restaurant 
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ABSTRACTS OF PRESENTATIONS 

(in order of presentation) 
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THINK AND SPELL: TOWARD A FASTER, BETTER P300 BCI 
 

B. Z. Allison, J. A. Pineda 

Cognitive Science Dept. 

UC San Diego, La Jolla, CA  

 

The P300 is a well-studied ERP component present in most adults. It is typically evoked in an "oddball" 

paradigm in which two types of stimuli, one frequent and one infrequent, are presented to a subject who is 

asked to pay attention only to the infrequent stimulus. For example, if several areas on a monitor are 

sequentially flashed and the subject is asked to press a button when one area is illuminated, flashes in the 

attended area will produce a P300, while unattended flashes will not. This characteristic suggests that users 

could communicate their interest in events via EEG activity alone through voluntary control of attention. 

Brain Computer Interface (BCI) systems using this characteristic of the P300 have been demonstrated 

(Farwell and Donchin 1988, Bayliss and Ballard 2000, Donchin et al. 2000), but many avenues for 

improving such a system remain unexplored. Two studies were conducted to explore which display 

parameters were best for a P300 BCI system. In the first study, subjects viewed an 8 x 8 display containing 

English letters and other characters. Rows or columns of characters were briefly flashed, and subjects were 

asked to count the flashes of a target character while ignoring other events. Subjects participated in 6 

conditions, with three different ISIs (125, 250, 500 ms) and two different approaches to grouping flashed 

characters (single row or column vs. multiple row or column flashes). As expected, P300 amplitude and 

area were larger in response to attended vs. unattended flashes. P300 and N1 amplitude were reduced in 

both flash conditions at faster presentation speeds. Targets which were flashed more frequently in the 

multiple flash condition produced greatly reduced P300 amplitude; the decline in amplitude was more 

severe than in previous studies of P300 and target probability. While subjects could reliably count flashes 

of the target character at all speeds in the single flash condition, many had trouble with the counting task in 

the multiple flash condition at higher speeds. The second study sought to explore the advantages and 

drawbacks of different grid sizes. Subjects were asked to count target flashes in three different grid sizes 

(4x4, 8x8, and 12x12) with the ISI between flashes of 500 ms. Counting accuracy was excellent in all three 

conditions, and attended flashes again produced a larger P300 in all subjects. Results suggest that improved 

brain computer interfaces (BCIs) based on attentional differences in the EEG are feasible, and further 

elucidate the optimal display and analysis parameters for such a system. (These data will also be presented 

in poster format.) 
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INTERACTIONS OF NEURONS AND GLIAL CELLS DURING THE GENESIS OF 

SYNCHRONOUS BRAIN WAVES 
 

Florin Amzica 

Laboratory of Neurophysiology, School of Medicine 

Laval University, Quebec, Canada, G1K 7P4 

 

The study of the electrophysiological activity of the brain as a whole has acquired a well-established 

importance. Through experiments that are underway, we have opened a new field of investigation, studying 

relationships between neurons and glia in intact brain networks during physiological states such as 

wakefulness and sleep, and during pathological states such as epilepsy. Recent years have brought to 

attention the unexpected rich anatomical and electrophysiological properties of glial cells (in simple 

preparations such as cultures and slices). Much of the present neurobiological effort is invested in the further 

investigation of these properties. The research unit allows a multitude of approaches by investigating the 

same phenomenon from electrical and ionic angles. One of the major issues in neurosciences is related to 

the synchrony of cellular activity, especially in fields related to the interpretation of cognitive activity. One 

of the most straightforward approaches to reach that goal is through the recording of simultaneous 

intracellular activities at the very site of their occurrence. Experiments are therefore carried out in acute 

(anesthetized) or chronically implanted cats. 

 

At the same time, I am involved in the study of the mechanisms underlying the genesis of the 

electroencephalogram (EEG). This research evolves along several lines: 

 

1) Understanding of the cellular mechanisms contributing to the genesis of particular rhythms of the 

EEG such as spindles, delta, slow (0.1-1 Hz) or fast (beta-gamma) oscillations. As an example, in recent 

papers we have found that sleep slow (<1 Hz) and paroxysmal oscillations result from complex interactions 

of neurons and glial cells also involving the extracellular ionic composition [J Neurophysiol (1999) 

82:3108-3122; (2001) 85: 1346-1350; J Neurosci (2002) 22: 1042-1053; Cereb Cortex (2002) in press]. 

Of particular interest for this meeting is the ability of training restricted regions of the brain to produce 

specific oscillation bursts in the gamma range (~40 Hz) [PNAS (1997) 94:1985-1989]. 

 

2) More recently, we became interested in the genesis of very slow or steady EEG components, also 

termed DC potential shifts. The understanding of the electrophysiological bases of these potentials may 

acquire a particular pertinence for their use in brain-computer interfaces. Preliminary data emphasize that, 

although brain cells might be involved in their generation, their role is limited to the effect they undergo 

from paracellular impingements arising in cerebral blood circuits. 

 

These projects are supported by the Canadian Institutes for Health Research and by Fonds de la 

recherche en santé Québec. 
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BCI RESEARCH AT COLORADO STATE UNIVERSITY 
 

Charles Anderson1,4, David Peterson1,2,4,5, Michael H. Thaut4,5, Michael Kirby3 
1 Department of Computer Science, 2 Department of Psychology 

3 Department of Mathematics, 4 Program in Molecular, Cellular, and Integrative Neuroscience 
5 Center for Biomedical Research in Music 

Colorado State University, Fort Collins, CO 80523 

 

Brain-computer interface research at Colorado State University consists of several related efforts. 

Much of our work is focused on the discovery of low-dimensional characterizations of multi-channel, 

spontaneous, EEG signals that are reliable discriminators of cognitive activity during common mental 

tasks, such as mental multiplication, rotation of three-dimensional objects, and mentally writing a letter. 

To-date, our best results are obtained by modeling signals from each channel with sixth-order, 

autoregressive (AR) models and classifying the AR coefficients with feedforward neural networks. We 

trained neural networks to classify half-second segments of six-channel, EEG data into one of five classes 

corresponding to five mental tasks performed by one subject. Using the AR representation and averaging 

over consecutive segments, an average of 72% of the test segments are correctly classified; for some test 

sets 100% are correctly classified. 

We are currently investigating several other techniques for dimensionality reduction and 

classification. Subspace methodologies, such as the Karhunen-Loeve (KL) transform, are generally useful 

tools for the characterization of high-dimensional data sets. Two approaches that have received 

considerably less attention than the KL transform are the maximum signal fraction method and canonical 

correlation analysis. In a comparative study of subspace methods, we find interesting differences in how 

each method extracts noise and other components that facilitate the discrimination of signals into classes 

corresponding to mental task. The subspace methods result in linear transformations of the data. Our 

preliminary results suggest that the combination of these linear transformations with fairly simple 

classifiers, including linear discriminant analysis (LDA), may be sufficient for solving some BCI 

classification problems. Careful comparisons of LDA, neural networks, and support vector machines 

show little statistical significance in the classification performance. 

In the work summarized above, analysis is performed off-line after EEG recording. We are currently 

experimenting with an inexpensive EEG acquisition and analysis system based on the 16-channel, 

MindSet-1000 EEG amplifier ($2000) connected via a SCSI interface to a laptop computer, and custom 

software running in a Linux environment. Recently this system was used to acquire 10-channels of EEG 

from subjects listening to paired tones of varying dissonance. Analysis of the signals identified the 

electrode pairs whose signals were most coherent at various frequencies and how this differed between 

the most dissonant and least dissonant tones. This system will be used in biofeedback experiments in 

which subjects will observe the classification result and confidence in real time, giving subjects the 

opportunity to modify their cognitive behavior to increase the classification accuracy. 

In joint work with Colorado State University’s Center for Biomedical Research in Music (CBRM), 

our lab is also engaged in basic research into the neural dynamics associated with auditory working 

memory. CBRM has extensive clinical results demonstrating the value of music for rehabilitating 

impaired motor function; a similar regime may ameliorate cognitive dysfunction. Working memory is our 

focus because of its critical role in most cognitive functions. Our analysis of the EEG recorded during 

auditory working memory tasks is based on custom, high-resolution frequency bands that we classify 

using support vector machines. A genetic algorithm is used to search the high-dimensional feature space 

for the feature subsets that best dissociate conditions. The genetic algorithm is used in a “wrapper” 

fashion, searching over feature subsets using the support vector machine’s classification accuracy as a 
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“fitness” measure. 

TOWARDS BETTER SOFTWARE COMPONENTS FOR BRAIN-COMPUTER INTERFACES 
 

Jessica D. Bayliss 

Rochester Institute of Technology 

Computer Science Dept. 

 

Most existing Brain-Computer Interfaces (BCIs) are monolithic creations that are designed to run on 

special hardware. Recently, interest has increased in making BCI systems flexible (see bci2000.org for an 

example of another flexible system). Flexible systems allow both hardware and software components in the 

system to be swapped in and out with minimal changes. Using techniques from software engineering, we 

have created components for data acquisition, communications, signal processing, and user applications. 

These components have been successfully integrated to form a BCI that has been used for tasks as diverse 

as on-line P3 recognition and feedback in virtual reality, playing games with eye movement control, and 

gamma wave experiments. With this system, it is possible to change signal processing without altering the 

main BCI system program code. We will discuss current work on assuring system reliability as well as the 

benefits of being able to change user applications easily. 
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THE BIO-FEEDBACK SYSTEMS DESIGN APPROACH AT THE "TOR VERGATA" 

UNIVERSITY 
 

Luigi Bianchi1,4, Fabio Babiloni2, Marco Arrivas, Patrizio Bollero, Maria Grazia Marciani 1,3 

1 Dip. Neuroscienze, University of Rome  “Tor Vergata”, ITALY 
2 Dip. Fisiologia Umana e Farmacologia, University of Rome “La Sapienza”, ITALY 

3 IRCCS, Fondazione “S. Lucia”, Rome, ITALY 
4 Brainware, Rome, ITALY 

 

The objective of this research was to realize an efficient and scalable C++ Bio-Feedback software 

framework that could be used in a wide range of pathological situations thus minimizing the time spent to 

build a completely new system. 

One of the main problems encountered in the development of computer-based systems for handicapped 

people is that it is very difficult to optimize them in a wide range of situations. This generally occurs because 

every patient has residual capabilities that are specific to his condition and that make him in some way 

unique. Moreover, very often, different pathologies are treated using different approaches and tools: 

sometimes the processing power of a PC is required while in some others it is desirable for the whole system 

to be portable and lightweight. In any case it is necessary to try to use all of the usable biological signals 

such as EEG, EOG, EMG, voice, etc. simultaneously to maximize the overall “communication bandwidth”. 

It must be noted that different approaches (e.g. EP, EEG, etc) could require targeting different platforms: 

the Microsoft Windows OS family for example (with the exception of Windows CE/Embedded) does not 

provide a Real-Time environment and several unpredictable delays (of the order of tenths of milliseconds) 

can be introduced at different stages. This is probably not a problem in EEG based applications, but it could 

be in EP ones. Moreover, in general, a Windows based solution could easily provide many features, such 

as text to speech capabilities, but, on the other side, it still does not allow to build wearable and cheap 

systems. 

However, even if the nature of the utilized signals may vary among different pathological situations, 

the way in which a biofeedback system works is quite stereotyped: after the data have been acquired, there 

is a DSP pre-processing stage that performs some basic operations on the biological input signals, then a 

classification stage in which some features are extracted and manifested in some way to the user and 

eventually recognized as one of the subject voluntarily controlled activities, and, at the end, a stage in which 

a task can be executed. Finally it is very frequent that these systems provide different operating modalities 

such as training, testing, setup, and running. 

This is a situation in which an object oriented programming approach reaches his best results: in our 

case it is possible to describe the operative flow that is common to all the biofeedback applications leaving 

to be defined only those aspects that are specific to the single implementation, such as the algorithms and 

the classification rules. Then, in a separate step, several systems can be realized just defining the points that 

are left unspecified. 

It is important to notice that the proposed solution does not make any assumption on both the operating 

system and the hardware used. For this reason all the formats of the generated files were based on the XML 

technology (eXtensible Markup Language), that is portable across virtually any OS, and that also allows to 

extend the file format without loosing backward compatibility. This is a key issue when data files need to 

be shared across different laboratories or put on the Web. 

This framework was used to develop three different BCI systems. Each of them was fully implemented 

using no more than 40 lines of C++ code. The same source code was compiled under the following operating 

systems: Windows 98/2000/XP (using Borland C++ Builder 5, Microsoft Visual C 6.0 and GCC 3.1), 

Windows CE 3.0 (using Microsoft Visual C++ for Embedded Visual Tools) and Linux (using GCC 3.1).  
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More details and resources can be found at http://www.luigibianchi.com/bci.htm 
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COMMUNICATION WITH SLOW CORTICAL POTENTIALS (SCP) 
 

Niels Birbaumer1,2, Thilo Hinterberger1, Andrea Kuebler1, Jochen Kaiser1, Ahmed El Karim1, Juergen 

Mellinger1, Barbara Wilhelm1, Nicola Neumann1 

1Institute of Medical Psychology and Behavioral Neurobiology, University of Tuebingen, Germany 
2Center for Cognitive Neuroscience, University of Trento, Italy 

 

The brain-computer interface (“Thought Translation Device”, TTD) has been developed to re-establish 

communication in severely paralyzed patients who operate the device by generating shifts of their slow 

cortical potentials (SCP) (Birbaumer et al., 1999; Kübler et al., 2001). Ten patients have been trained with 

the TTD for an extended time period. The research is targeted toward understanding the learning 

mechanisms of SCP self-regulation. Neuroanatomical structures responsible for physiological control have 

been investigated in a group of patients with intractable epilepsy using functional magnetic resonance 

imaging (fMRI). Results indicated that attentional-motor systems were activated during cortical negativity 

while cortical positivity correlated with the inhibition of motor and thalamoreticular systems. Performance 

in physiological regulation was predicted with high accuracy by activation of inhibitory basal ganglia 

structures and deactivation of SMA. The research will be extended to paralyzed patients at the initial stage 

of amyotrophic lateral sclerosis (ALS). Psychophysical methods as well as questionnaires have been 

developed to reveal the relationship between successful SCP regulation and the perception of brain waves. 

Patients who had successfully learnt self-regulation, were able to perceive their brain state correctly 

(Kotchoubey et al., 2002). Conscious perception occurs after patients have already learned SCP regulation. 

One paralyzed patient gave a very detailed description of his mental strategy to produce negative and 

positive SCP shifts that corresponded exactly with his recorded brain activity (Neumann et al., submitted). 

Mental strategies may play an important role in the patients’ perceived self-efficacy. 

 

To assess the cognitive status of locked-in patients, a neuropsychological test system based on event-

related potentials was integrated into the TTD. Different psychophysiological paradigms (e.g., oddball 

paradigm) were applied to completely paralyzed patients and patients in the vegetative state to evaluate 

their remaining processing capacities. Only patients with intact event-related potentials in at least some of 

the experimental tests were trained with the TTD. 

 

To measure depression in severely paralyzed patients, a questionnaire has been developed. Existing 

instruments, such as Beck’s depression inventory, are inappropriate, because they contain questions that 

cannot be answered by severely paralyzed and artificially ventilated patients (e.g., questions concerning 

sleep, appetite, etc.). Depression scores in a group of 76 ALS patients were significantly higher than in 

healthy controls (N=93), but significantly lower than in patients with unipolar depression (N=56). Quality 

of life was rated as satisfactory or good by 63% of the ALS patients. 

 

To enhance the learning process of SCP regulation, transcranial magnetic stimulation (TMS) was used 

in a group of healthy subjects. A single-pulse was applied before each trial in the TTD self-regulation 

training. An effect of stimulation on cortical positivity was found, when the coil was rotated in an angle of 

90º (Kübler et al., in press). Different stimulation and recording sites are presently investigated. 

 

To increase motivation in severely ill patients, BCIs have to be adapted to individual needs. For the 

TTD, a special web browser was developed that enables patients to browse the internet with their brain 

activity. The different options which are usually offered on a web page, are presented successively and 

patients select the desired option by a downward cursor movement. A patient with restricted writing skills 
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was provided with a fast communication program containing his most relevant needs (Kaiser et al., 2002). 
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THE NEIL SQUIRE FOUNDATION BRAIN-COMPUTER INTERFACE LABORATORY 
 

Gary Birch1, Steven Mason1,2 
1Neil Squire Foundation, Vancouver, B.C. Canada 
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Abstract: 
The focus of our research is the development of BCI technologies for intermittent control applications,  

that is, technology that will work when the User intends control, but also remains neutral when there is no 

intent to control.    

 

Our BCI laboratory is located in the G.F. Strong Rehabilitation Centre in Vancouver, Canada.  This 

lab is equipped with a computer network running a Matlab/Simulink development environment.   Our team 

of three researchers, an RA and several graduate students conduct a range of studies across the following 

four streams of research: 

 

Stream I: BCI Technology Development 
In this stream of research, our efforts are focused on developing better signal processing methods to 

convert EEG into reliable control signals.  To date, our research team has developed a single-position, 

switch that responds to specific spatiotemporal patterns in EEG data related to imagined movement.  This 

switch, which we refer to as the Low-Frequency Asynchronous Switch Design (LF-ASD) or more casually, 

the “brain switch”, has demonstrated on-line asynchronous detection accuracies greater than 96% with 

able-bodied subjects and subjects with high-level quadriplegia (see Stream 2). 

 

Currently our team is working on various statistical signal processing methods to improve the design 

of our brain switch.  For example, we recently added a custom energy normalization transform to the 

LF-ASD.  An off-line study of this new addition has indicated that True Positive or hit rates can be 

increased by 13-24% for False Positive rates near 1.0%.  

 

In the last year, we began a collaborative project with Dr. Moore and her team at Georgia State 

University, Atlanta, USA to conduct a comparative evaluation of selected BCI technologies. 

 

In the future we plan to investigate alternative electrode designs, electrode placement (external vs 

subcutaneous), and the ability to extend our brain switch to recognize multiple brain states. 

 

Stream II: BCI Technology Evaluation and Usability Evaluations 
A significant portion of our research is dedicated to on-line studies of the BCI technologies we have 

developed. These studies are used to determine switch performance and reliability and to determine how 

well people can adapt to a particular interface technology.  For example, we are completing a study 

involving five able-bodied subject and five subjects with high-level quadriplegia as they dynamically 

control a simple video game.  Preliminary results from seven subjects indicate that the brain switch can be 

operated at True Positive (TP) rates in the range of 40%-75%, with corresponding False Positive (FP) rates 

less than 1.0%.  This corresponds to an overall switch accuracy greater than 96%.  These results verify 

previous results from an on-line evaluation on a smaller test population. 

 

Stream III: Theoretical Modeling 
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As a new, multidisciplinary field of research, BCI technology development and evaluation lacks a 

common vocabulary and formal functional model. As a result it is quite difficult for researchers to 

objectively compare technology designs and evaluations. Drs. Mason and Birch have proposed a general, 

theoretical framework to describe BCI System design to address part of this need. This new framework has 

been submitted to IEEE Tran. Rehab. Eng. for publication. 

Stream IV: Consumer Hardware Design 
We have started this stream of research to explore what designs and application methods are acceptable 

to the Users in real-world environments.  We feel that we need to start looking at these issues because the 

acceptable designs for these “wearable” interfaces may significantly constrain electrode type and 

placement, thus affecting the types of signals available for control. 

 

Our lab continues to grow through the support of the Natural Sciences and Engineering Research 

Council of Canada (NSERC), the Rick Hansen Neurotrauma Initiative (RHNI-BC), the Government of 

British Columbia, Ministry of Competition, Science and Enterprise, the National Science Foundation 

(NSF), and the GF Strong Rehabilitation Centre. 
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MACHINE-LEARNING FOR EXTRACTING NEURONAL SIGNATURES OF NATURAL 

MOTOR COMMANDS FROM SINGLE-TRIAL MULTI-CHANNEL EEG DATA IN 

UNTRAINED SUBJECTS 
 

Benjamin Blankertz, Christin Schaefer, Guido Dornhege, Roman Krepki, Klaus-Robert Mueller  

Intelligent Data Analysis Group  

Fraunhofer-FIRST, Berlin, Germany 

 

Volker Kunzmann, Florian Losch, Gabriel Curio 

Neurophysics Group, Dept. of Neurology 

Klinikum Benjamin Franklin, Freie Universitaet, Berlin, Germany 

 

The Leitmotiv of our BCI approach is 'let the machines learn', i.e., we aim to minimize the need for 

subject training while the major learning load imposed on two coupled adapting systems (human subject 

and computer) is to be accomplished by the machine. Key ingredients in our approach are (1) a behavioral 

context in which the subject can use well-established motor competences overlearned in daily life, which 

(2) are embedded in a 'naturalistic' BCI design, while (3) in the background the algorithmic flow is 

controlled by state-of-the-art machine learning (ML) techniques that extract relevant information from 

high-dimensional noisy EEG data. Concerning the selection of brain signals, we presently investigate 

event-related potentials (ERPs), with a focus on non-oscillatory lateralized pre-movement potentials. Our 

analyses suggest that here the classification problem of discriminating ERPs characteristic for different 

intended motor outputs is linear: the use of linear models results in better classification generalization as 

compared to more complex non-linear models if the number of training samples is limited as it is typically 

the case in BCI paradigms. Ongoing studies analyse two different ERP types: 1) We predict the laterality 

of imminent left vs. right hand finger movements in a natural keyboard typing condition: when classification 

is based on the lateralized Bereitschaftspotenzial, 5 of 10 subjects, who all were untrained for BCI, achieved 

a theoretical information transfer rate of greater than 15 bits per minute (bpm), and further 4 subjects 

reached 6-10 bpm. 2) We detect cerebral error potentials from single false-response trials in a forced-choice 

task (d2-test), reflecting the subject's recognition of an erroneous motor response: based on a tailor-made 

classification procedure that allows to bound the rate of false positives at 2%, the algorithm manages to 

detect 85% of error trials in 7/8 subjects. The design here is to concatenate such error detector to the output 

of a BCI-classification of intended motor actions: the latter, as a 'first-pass' classification, is fed back 

instantaneously so that the subject's brain can detect eventually erroneous classifications, 'label' them by 

emitting an error potential and thereby initiate an on-line 'second-pass' BCI-reclassification to raise the BCI 

bit rate. 

 

These results of our ERP-ML approach constitute an interesting BCI benchmark adding to established 

techniques working with feedback of slow cortical potentials or brain oscillations. 
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CLOSED LOOP BRAIN-MACHINE INTERFACES 
 

John K. Chapin1, Miguel Nicolelis2 
1Dept of Physiology and Pharmacology, SUNY Health Science Center, Brooklyn, NY 

2 Dept of Neurobiology, Duke University Medical Center, Durham, NC 

 

Over the past 5 years, we have demonstrated, for the first time, that simultaneously recorded 

populations of single neurons in the motor cortices of rats and monkeys can be electronically “decoded” 

and used to directly control a robot arm. In the first study, populations of up to 46 single neurons were 

simultaneously recorded in the primary motor cortex of rats initially trained to obtain water by pressing a 

lever to move a robot arm. Next, electronic techniques were used to transform the movement related 

information recorded in the motor cortex into an electronic output capable of controlling the robot arm in 

real time. In experiments, the rats first controlled the robot (and got their water) by moving by moving the 

lever, but this robot control was then suddenly switched to the brain-derived signal. Most rats were able to 

routinely use this motor cortex population function to position the robot arm under the water dropper and 

obtain their water. Over continued trials, the ability of the brain-derived signal to control the robot arm 

became increasingly independent of the forelimb movement, with which it was normally associated. These 

results therefore demonstrated the feasibility of using neuronal population activity to control external 

devices 

 

Next, we demonstrated the feasibility of brain-controlled robotics in monkeys trained either to move a 

manipulandum or to reach to a target in 3D space. Neural populations were recorded throughout the arm 

areas of the frontal and parietal cortices. Using multivariate regression techniques to decode the neural 

population vectors, the animals were able to use their brain signals to move a robot arm in both 1D and 3D 

spaces with the same trajectory as their hand. Accuracy improved generally with increased numbers of 

recorded neurons, approximating a slowly saturating hyperbolic curve. 

 

Because these results suggested the feasibility of using brain-derived signals to restore movement in 

spinal cord injured patients, we are now investigating the possibility of bringing tactile and proprioceptive 

feedback from a brain-controlled robot back to the brain by stimulating in the somatosensory system 

through implanted multi-electrodes. Initial studies have shown that stimulation in the somatosensory cortex 

of rats can be used to deliver virtual conditioned stimulus cues.  These animals are trained, using medial 

forebrain bundle stimulus rewards, to turn in the direction of the part of the body that receives a perceptible 

virtual stimulus, generally producing an illusion of being touched on the left or right side of the face. When 

a remote controlled stimulator is attached on the rat’s backpack, it can be remotely guided to traverse a wide 

range of indoor and outdoor terrains, including stairs, ladders, trees and rubble piles. In conclusion, these 

studies suggest feasibility of using electronic technology to transmit information bi-directionally between 

the brain and external machines. 
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DEVELOPMENT AND APPLICATIONS OF BCI AT SANTA LUCIA FOUNDATION 
 

Febo Cincotti, Fabio Babiloni, Donatella Mattia, Maria Grazia Marciani 

Fondazione Santa Lucia - I.R.C.C.S., Roma, Italy 

 

The Santa Lucia Foundation is a renowned hospital for the neuro-motor rehabilitation of patients 

suffering from different diseases (stroke, amputation, paraplegia, etc). Since the beginning of its activities, 

in addition to the clinical routine a great deal of scientific research work on the themes of neuroscience was 

carried out, also in cooperation with Italian and foreign Universities. For the last 10 years, the Santa Lucia 

Foundation was recognized “IRCCS” (Scientific Institute for Research, Hospitalization and Health Care) 

by the Italian Government. 

As for clinical activity, the center admits about 2000 patients per year, mostly affected by neurological 

diseases, caused by either cerebrovascular or degenerative or post-traumatic injuries. The treatment of these 

patients comprises motor rehabilitation (functional recovery and development of compensation strategies) 

or cognitive rehabilitation. 

As a research center, the scientific interest is focused on themes regarding neurological and motor 

rehabilitation, spanning from neurophysiology and neuroimages to experimental neuropharmacology and 

kinematics of movement. The scientific productivity benefits from the cooperations that the Santa Lucia 

Foundation has with national and international centers. This effort produces about 100 publications per year 

on scientific journals. 

In this context, the research on Brain-Computer Interfaces is supported by a group of researchers with 

different skills, both on the neurological side and on the bioengineering side. All researchers have previous 

experience in the field of EEG acquisition and analysis in the framework of neurophysiological research. 

During the years 1998-2001, the group participated in an important project funded by the European 

Commission named ABI (Adaptive Brain Interfaces). The main achievements of the project were: (i) the 

development of effective EEG classification algorithms, which brought to several publications on scientific 

papers and presentations at international meetings; (ii) the availability of a prototype of portable BCI; (iii) 

a large resonance in the media (e.g. more than 100 interviews and articles on newspapers and magazines) 

and in the European Commission (e.g. selection of the project as finalist of the Descartes Project, the major 

European science prize for outstanding collaborative research in any scientific field). 

The current version of our Brain Computer Interface is based on: (i) the acquisition of eight EEG 

channels placed on the fronto-centro-parietal regions of the scalp; (ii) the extraction (twice a second) of 

spectral features, in the band 8-30 Hz; (iii) the classification through a local neural classifier, based on the 

Mahalanobis distance of incoming features vectors from given prototypes. The prototypes were obtained 

using the expectation maximization framework on samples of the features vector used as training set. 

The current research efforts are aimed at three objectives: 

(i) improving portability and effectiveness of the working prototype. This research benefits from the 

collaboration with the group at Tor Vergata University (Rome) with its engineering competence and 

has already produced a new promising type of quadratic classifier; 

(ii) adaptation and development of applications to use the current prototype as an aid for disabled people. 

This research line is funded by the Italian National Research Council and is carried on in cooperation 

with other groups from the Universities of Rome. In this research line we benefit from the environment 

provided by the hospital and the established competence in the care-giving of the many patients; 

(iii) application of the technologies developed in the BCI research to the studies on cerebral plasticity. We 

expect to provide evidence for a potential application of the BCI area into the cognitive/motor retraining 

processes after focal brain injury, to implement future rehabilitation strategy. 
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SPINAL AND CORTICAL PLASTICITY INDUCED BY PRACTICE AFTER STROKE AND 

SPINAL CORD INJURY 
 

Bruce Dobkin 

Reed Neurological Research Center 

University of California Los Angeles 

 

Brain-computer neural communication to drive functional neuromuscular stimulation and robotic 

devices have become feasible as neural network modeling and computer algorithms for translating thought 

into action evolve. Adaptive algorithms will better decode neural signals and provide more physiologic 

feedback for multijoint movements. Multiple cortical motor representations are tuned to aspects of 

movement, observation, and imitation. A neuroprosthesis that draws these regions will interact with 

mechanisms of CNS plasticity in ways that aid or in ways that may interfere with success. Functional 

neuroimaging techniques can be used as physiologic markers of representational plasticity during skills 

learning in patients with stroke or spinal cord injury. Similarly, these techniques can provide information 

about where to place cortical stimulators or sensors and how training and activations over time alter 

functional neuroanatomy. 

 

Hemiparetic subjects were trained with a specific technique called body weight-supported treadmill 

training to try to improve overground walking ability. This physical therapy intervention optimizes sensory 

feedback related to the step cycle at walking speeds that are greater than subjects can achieve with over 

ground, conventional training. Training is associated with an evolution of changes in the primary 

sensorimotor cortex and supplementary motor areas that parallel gains in motor control and behaviors. 

Greater intensity of locomotor training further alters these representational changes when such changes 

would not be expected clinically.Such CNS changes may be derived from interactions within the distributed 

motor network. The effects of repetitive locomotor-related sensory inputs during the practice of a skill such 

as walking provides insights into how functional neuroimaging may be employed in developing 

neuroprostheses and in designing training paradigms for subjects. 
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UNLOCKING THE LOCKED-IN: PROGRESS IN BRAIN-COMPUTER INTERFACE 
 

Emanuel Donchin 

Department of Psychology 

University of South Florida, Tampa, FL 

 

Brain-Computer Interfaces come in two flavors, the "Control" model and the "Keyboard" model. 

Systems adopting the Control model aim to provide the user with continuous control over a device. The 

control is initiated by the subject. In such a system the controlling element is conceptualized as a switch, or 

a cursor, that can be applied to a large number of control situations. In general, most such 'control' systems 

utilize bio-feedback techniques to train the user to control the spectral composition of the EEG. The 

Keyboard model, on the other hand presents the subject with a structured environment, no different in the 

level of imposed structure than the standard keyboard. The simulated keyboard generates systematic stimuli 

and the subject choice of keys is inferred from the pattern of brain activity triggered by these stimuli. In 

most of these systems the selection is based on an analysis of Event Related Brain Potentials elicited by 

keyboard elements. In this report we describe a Keyboard model first described by Farwell & Donchin 

(EEG Journal, 1988, 70:510-523). The system employs the "oddball paradigm" generated by presenting the 

subject with a 6 by 6 matrix of cells. The cells contain the letters of the alphabet and a few symbols. The 

user focuses attention on the cell containing the character to be communicated. An "odd ball" paradigm is 

generated by intensifying, every 125 msec, in a random order each of the rows and columns of the matrix. 

Thus the subject is presented with a sequence of stimuli 16% of which contain the attended row and column. 

As can be expected from all we know about the oddball paradigm and P300, the row, and the column, 

containing the attended cell elicit a P300 component. The system examines the 600 msec epoch following 

each intensification and if the P300 can be detected, the selected cell can be identified. The detection of 

P300 required, in our original study, the averaging of at least 17.3 trials, so that the system could 

communicate only 2.3 characters per minute at 95% accuracy. In a subsequent study using a modified 

approach to the detection algorithm, including use of the discrete wavelet transform (Donchin, E., Spencer, 

K. M., & Wijesinghe, R, IEEE Trans. Rehab. Engineering, 2000,8, 174-179) 10 able-bodied subjects, and 

5 subjects who used wheel chairs, the number of trials required for detection, increasing the transmission 

rate to 4.1 characters per minute at 95% accuracy for the able bodied subjects and 3.2 characters per minute 

for the disabled subjects. One of the major advantages of the Keyboard model is that subjects can use it 

without requiring prior training. The P300 is elicited in virtually all subjects who are exposed to an oddball 

sequence. We are currently planning to test the system with ALS patients. 
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INTRACORTICAL MOTOR NEURAL PROSTHETIC DEVICES 
 

John Donoghue 

Department of Neuroscience 
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Our laboratory is developing a neural motor prosthetic (NMP) to restore the ability for paralyzed 

humans to interact with their environment. We are developing three basic components of an NMP system: 

an implantable recording array, neural decoding hardware and software, and an interface with real world 

devices.  The recording device, which serves as a brain machine interface (BMI), is a Bionic Technologies 

silicon 100 electrode array which includes a percutaneous connector for external communication.  We have 

demonstrated that this array can be used to record multiple neurons for years when implanted in the motor 

cortex (MI) of macaque monkeys, suggesting that it is a reasonable prototype for a human BMI.  We are 

developing decoding algorithms that transform neural activity into useful control signals.  Using linear 

correlation methods we are able to reconstruct intended hand trajectories based upon the activity of small 

numbers (~6-40) of MI neurons.  Such signals can be used to drive robot arms and computer cursors.  

Finally, we have created a real time system which successfully decodes MI neural activity and translates it 

into cursor motion on a computer monitor.  Using this system monkeys are able to perform visually guided 

tracking tasks when the cursor is driven by MI neural activity.  This decoding nearly as fast, and is about 

70% as accurate as the actual hand motion required to perform this task.  Further, cursor control does not 

require that the actual hand tracking motions be performed.  These results demonstrate that an NMP should 

be able to provide rapid, real time control signals for humans.  Intended hand motions can be transformed 

into the motion of other physical or virtual instruments or potentially of paralyzed muscles.  Importantly, 

single neuron based NMPs can provide motions that resemble natural hand trajectories in their speed and 

accuracy.   

 

Financial Disclosure: JD is a founder and stockholder in Cyberkinetics, Inc, a company that is developing 

neural prosthetic devices 
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ADAPTIVE CONTROL OF REACHING FOR NEUROPROSTHESIS 
 

Gyongyi Gaal 

Neuroprosthesis Research Organization 

GPO Station PO Box 20350 

Brooklyn NY 11202-0350 

 

Various authors proposed linear models to reconstruct monkey arm movement trajectories from neural 

activities. Nevertheless, I would like to reintroduce here the notion of estimating the elements of the 

movement outcome phase space dependent Jacobian matrix of neural activity  - movement outcome 

nonlinear functions with a view to develop a cortical control scheme of artificial robot arms with high 

number of nonlinear sensors and actuators. The method uses local linearization. It is equivalent to 

multivariate fitting of time derivatives of time-shifted neural activities and movement outcomes (e.g. 

velocities if the arm movement is modeled simply as the movement of the endpoint along a movement 

trajectory). The fitting is performed at each and every point in movement outcome phase space. The 

estimated matrix elements can then be used for trajectory and velocity reconstruction even with few 

recording sites if consecutive movement outcomes and neural activities are reproducible. The model can 

also be extended to include configurations and forces. I will then present a hybrid software hardware model 

to illustrate how nonlinear functions can be learnt by systems whose task is to control robotic arms which 

have high number of sensors and actuators with correlated activities. Finally, I propose a method to calculate 

weight patterns, which are needed to transform high dimensional, but arbitrarily selected spatiotemporal 

motor outcome related activities into desired movement outcome either for a robot arm or functional 

electrical stimulation of primate muscles. Such weight patterns will then be ideal in a least square sense to 

later predict and implement desired movement even when the desired movement is known only to the 

primate subject. Supported by NIH. 

 

Gaal, G. (2001) Nonlinear models for cortical control of robotic arms, submitted. 

 

Freeman, WJ. and Gaal, G. (2001) The role of entorhinal cortex in multisensory integration based on 

epidural EEG recordings from olfactory bulb, somatomotor, auditory, visual and entorhinal cortices of 

awake cats. submitted to J. Neurophysiology. 
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THE SSVEP-BASED BCI SYSTEM WITH HIGH TRANSFER RATE 
 

Shangkai Gao 

Lab of Medical Information Engineering 

Department of Biomedical Engineering 

School of Medicine, Tsinghua University, Beijing, China 

 

The Lab of Medical Information Engineering is a research division under the Department of 

Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China. Our research scopes 

include the detection, processing, analysis, recognition, transmission and management of medical 

information in various biomedical signals and images. Currently, the most active research areas in the lab 

are: (1) Brain and neural information engineering; (2) Medical Imaging and image processing. In addition, 

the general theory of biomedical signal processing is also a subject of our long-term research. 

In the area of brain and neural information engineering, our interests fall mainly around 3D dynamic 

imaging of brain electrical activities and brain-computer interface. The research projects cover the 

extraction of transients in EEG, single trial and dynamic analysis of EP and ERP, dipole localization in the 

brain, high- resolution EEG, independent component analysis (ICA) of EP and ERP nonlinear dynamics, 

and approximate entropy (ApEn) analysis of EEG. In addition, to develop novel signal processing methods, 

some applied software has also been developed, such as the epileptic discharge wave detection, brain-

computer interface (BCI), sleep analysis, perception and cognition analysis.  

Since 1999, we have been engaged in brain computer interface research. We have developed a BCI 

system based on steady state visual evoked potentials (SSVEPs). Our first paper published in this area is in 

the first joint meeting of BMES and EMBS, in Atlanta, 1999. The title of the paper is “An EEG-based 

cursor control system”.  

To develop a practicable EEG based BCI system, we seriously consider the following problems: 

(1) The information transfer rate.  

The information transfer rates of current BCI devices are rather low. If this rate could be increased, 

BCIs might become a useful tool for people to interact with their environment. 

(2) Requirements for training.  

Long time training is always not expected. BCIs based on evoked potentials may require less training. 

(3) The medical invasiveness.  

The less invasive the technique is, the more likely it can be used in a wide range of applications. 

(4) Least number of electrodes for data acquisition. 

To mount a large number of electrodes on scalp will be time consuming and tiresome. The strategy of 

using a small number of electrodes in the system will be welcome in practice.  

(5) System should be easy to carry and easy to use. 

Based on the above considerations, we have developed a SSVEP-based BCI system which bears the 

advantages of high transfer rate, minimal training and noninvasiveness. The system focuses on EEG activity 

that occurs at a specific frequency and specific location of cortex. These characteristics simplify the feature 

extraction procedures and the necessary training.  

We have applied our SSVEP-based BCI prototype system to control cursor movements, home electrical 

appliances and to make phone calls. The main features of our system are: 

(1) Larger number of inputs. One can pick up a specific target out of as many as 40 candidates.  

(2) Fewer electrodes for data acquisition. Only two active electrodes are used in a wireless EEG system.  

(3) Higher transfer rate: the average transfer rate over all testees was 27.15 bits/min, the higher one is over 

50 bits/min. 

Future work will seek to develop a compact and portable system and put it to practical use. Also,  
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increasing the input accuracy and the applicability to a larger range of users are necessary. 

ON-LINE MEASURMENT OF MENTAL WORKLOAD 
 

Alan Gevins  

San Francisco Brain Research Institute & SAM Technology 

San Francisco, CA 

 

Perhaps the most basic issue in the study of cognitive workload is the problem of how to actually 

measure it. Here, we review our long-term program of research aimed at developing cognitive workload 

monitoring methods based on EEG measures. This research program began with basic studies of the way 

neuroelectric signals change in response to highly controlled variations in task demands. The results yielded 

from such studies provided a basis on which to develop appropriate signal processing methodologies to 

automatically differentiate mental effort-related changes in brain activity from artifactual contaminants, and 

for gauging relative magnitudes of mental effort in different task conditions. These methods were then 

evaluated in the context of more naturalistic computer-based work. The results obtained from these studies 

provide initial evidence for the scientific and technical feasibility of using EEG-based methods for 

monitoring cognitive load during human-computer interaction. 

 

Research supported by the National Institutes of Health, the Air Force, and the National Aeronautics 

and Space Agency. 
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BIOSIGNAL PROCESSING ENVIRONMENT FOR AN EEG-BASED BRAIN-COMPUTER 

INTERFACE 
 

C. Guger, G. Edlinger 

g.tec – GUGER Technologies OEG 

Graz, Austria 

 

Biosignal Processing Environment 
g.tec offers a complete biosignal processing platform under MATLAB which allows the fast and easy 

realization of an EEG-based brain-computer interface (BCI). This platform facilitates the multi-modal 

acquisition and analysis of biosignals such as EEG, ECoG, EMG, EOG and ECG. After amplification 

(g.BSamp) the signals are passed to a PC/notebook data acquisition system for visualization and storage. 

g.STIMunit controls experimental paradigms while g.RTsys performs the data acquisition and real-time 

parameter extraction and classification of the EEG. 

 

The system provides algorithms for off-line analysis and allows integratation the same algorithms for 

real-time processing. A key feature is the rapid prototyping environment which enables fast and easy 

implementation of different processing algorithms and classification methods for optimal BCI performance. 

The system enables to achieve reliable results in an early stage of development and to perform rapid 

iterations of the design. The environment allows the integration of user-specific hardware and processing 

modules and gives access to MATLAB-Toolboxes to accelerate the BCI research and to encourage the 

creativity. 

 

 
Figure 1: Hardware and software architecture of the portable BCI system. 
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To give BCI professionals the opportunity to acquire and analyse data of multiple patients/subjects a 

Personal Area Network gives access to a network of BCI systems (User-Systems #1, #2,...). A remote 

control unit allows to access multiple systems.  

 

Development Process and Tests of the Brain-Computer Interface 
Step1: Selection of parameter estimation and classification algorithms  

The selection of the correct and best suited parameter estimation and classification algorithms is one of the 

most important tasks when setting up a new BCI system. Therefore, a specific algorithm selected from an 

EEG parameter estimation blockset can be plugged into the Simulink model as shown in Figure 2. In this 

case the brain-computer interface uses two bipolar EEG recordings (C3 and C4 of the international 10/20 

system). Of each channel bandpower parameters are estimated and classified on-line with a linear-

discriminant analysis. The classification result can be used to control, e.g., a cursor on the computer screen 

. 

Step2: Implementation of the parameter estimation and classification algorithms with Simulink 

Custom algorithms can easily be integrated in the analysis model. 

Step3: Off-line simulations and tests of the Simulink block diagrams 

Step4: Connection of the Simulink model to the real world 

 
Figure 2: Real-time bandpower estimation of 2 EEG channels. 

 

Step 5: Real-time code generation 

Step 6: Development of an experimental paradigm under g.STIMunit  

The brain-computer interface can be controlled by e.g. motor imagery of left/right hand movement. 

Therefore, a program converts a left hand imagination into a left movement of a horizontal bar on a 

computer screen and a right imagination into a right movement.  

Step 7: Real-time tests  

The BCI system was tested on about 150 subjects/patients [1, 2, 3, 4]. Three subjects reached a classification 

accuracy of 100 % [3]. 
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Future developments 
In order to make BCI systems accessible to patients it is necessary to minimise the size and the costs. 

g.tec is currently developing a Pocket-PC brain-computer interface consisting of an EEG-amplifier, and a 

Pocket-PC.  

 
Figure 3: Pocket-PC BCI system. 

 

The system is running Windows CE and allows the visualization, the quality check and storage of data. 

Parameters are extracted in real-time and are used for visual, auditory or tactile feedback to the 

patient/subject. 
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BRAIN COMMUNICATION INTERFACE RESEARCH AT THE NINDS 
 

William Heetderks, M.D., Ph.D. 

Neural Prosthesis Program 

NINDS, NIH 

 

The mission of the National Institute on Neurological Disorders and Stroke (NINDS) is to reduce the 

burden of neurological disease. Loss of the ability to communicate with others and with the environment 

represents a significant burden in many neurological disorders including neurodegenerative disorders and 

trauma to the central nervous system. Our research is focused on developing integrated systems to restore 

function and provide significant functional benefit to affected individuals. 

 

The Neural Prosthesis Program supports the development of direct interfaces with the intact parts of 

an injured nervous system for the purpose of getting information into and out of the brain. A major focus 

over the past several years has been the development of arrays of microelectrodes that can chronically 

record the activity of single cells or multi-unit activity from small clusters of cells. To make devices 

clinically useful a system that includes detection of microvolt potentials within the brain and transmission 

of these signals from the brain to appropriate processing systems is needed.  

 

NINDS primarily supports research by providing grants and contracts to investigators at universities 

and research centers within the US and to a lesser degree internationally. Projects can be initiated by the 

NINDS or by extramural researchers. For the conduct of translational research a third research strategy is 

being developed that will involve collaborative activity between extramural researchers and the NINDS 

program staff. Plans for the future are to utilize multiple mechanisms including grants, contracts and 

cooperative agreements with investigators around the country to further this research effort. We also 

anticipate additional collaboration with other government agencies in pursuing these goals.  
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UCLA NEUROENGINEERING PROGRAM 
 

Jack Judy 

Department of NeuroEngineering 

UCLA  

Los Angeles, CA 

 

The UCLA NeuroEngineering Research Laboratory is focused on several efforts to make use of state-

of-the-art engineering technology to develop and execute projects that address problems that have a 

neuroscientific base.  The following three projects are examples of the type of research in this laboratory. 

UCLA Neuroengineering Project 1: Transcutaneous RF-Powered Neural Recording Device (a 

collaboration with Dr. Istvan Mody, Neurology, UCLA).  The study of complex neuroscientific 

phenomena, such as fear, epilepsy, and aggressive behavior, is currently being limited by the physical and 

psychological effect of the test environment itself. In such studies it is necessary to have a means of 

observing electrophysiological activity, without interfering with its environment, so the test subject does 

not know that it is being studied. Examples include the dynamic electrophysiological features of emotion, 

the behavioral interactions of multiple interacting animals in their natural environment, and the real-time 

continuous monitoring of brain activity in epileptic animals enabling the analysis of seizure activity during 

awake and sleep periods. This research effort has designed, fabricated, and is testing a miniature, 

implantable, remotely powered, and wirelessly transmitting recording device. Specifically, an inductively 

powered single-channel 

neural recording device has been designed, fabricated, and tested. This device amplifies the recorded signal, 

which is then used to regulate a voltage-controlled oscillator about a 3.1 GHz carrier wave. This FM wave 

is sent through a power amplifier that drives a 50 W antenna load and transmits the signal into free space. 

The signal is picked up by a similar antenna and demodulated using off-the-shelf equipment. The 

demodulated signal has a high degree of correlation with the original input signal for inputs as small as 5 

mV and as great as 1.5 mV. The device has a 0.5 m transmit range allowing for continuous recordings from 

animals in their 

natural environments. 

UCLA Neuroengineering Project 2: Multielectrode Microprobes to Deep-Brain Stimulation (a 

collaboration with Dr. Marie-Françoise Chesselet, Neurology, UCLA). Although deep-brain stimulation 

(DBS) can be used to eliminate the severe side effects of Parkinson's disease (e.g., muscle tremors), it does 

not prevent neurodegeneration that leads to dementia or death. A combination of DBS and drug treatment 

might be capable of halting these degenerative processes by altering the response of neural tissue to drugs. 

In order to fully investigate this hypothesis, a comprehensive long-term stimulation study in an animal 

model is needed. We have designed, fabricated, and tested a novel micromachined probe that is able to 

accurately stimulate the subthalamic nucleus (STN) while minimizing damage to the surrounding tissue. 

The probe is coated with gold and insulated with silicon nitride for biocompatibility, has four platinum 

electrodes to provide a variety of stimulus patterns, and is formed in a novel 3-D plating process that results 

in a microwire-like geometry (i.e., smoothly tapering diameter) with a corresponding mechanically stable 

shank. 

UCLA Neuroengineering Project 3: Development of High Density Electrode Arrays for Retinal 

Prostheses (a collaboration with Dr. Bob Greenberg, Second Sight, LLC). Electrically stimulating the 

retinas of blind patients suffering from macular degeneration can illicit visual perceptions. High-density 

arrays of electrodes can induce increasingly higher resolution images. However, the area of the retina to be 

simulated 

is small (3imes;3 mm2) and each electrode must be capable of delivering sufficient charge to activate deep 
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retinal neurons. Simple flat electrodes cannot supply the required current density reliably without electrode 

corrosion. Our approach is to enhance the effective electrode area by micromachining the electrode surface, 

and investigating materials with higher charge injection density capability. 
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THE CHOICE OF BRAIN COMPUTER INTERFACE TECHNIQUE 
 

Philip R. Kennedy 

Neural Signals, Inc. 

Atlanta, GA 

 

It is difficult to decide which communication system is optimal for a specific patient.  This decision is 

not made easier by the various devices available and their capabilities. Nor is the decision made any easier 

by the patient's diagnosis. We suggest here that when deciding on the most suitable device, we should make 

a functional diagnosis and use this as the basis for the decision. This is a valid approach except when the 

underlying disorder is quickly worsening (as in some ALS patients) or improving (as in some brainstem 

strokes). In static or slowly progressive conditions, which are the majority, the following schematic is 

proposed. 

The key step to making a functional diagnosis is to focus on what the patient can do. Do not focus on 

what the patient cannot do.  

If the patient has movement, an assistive or augmentative communication device may be adequate.  At 

this meeting we are mainly concerned about BCI devices for patients who have minimal movements.  Six 

decision points appear as the patient's function deteriorates. 

1] If there is visible movement involving three distinct muscles, then use the Muscle Communicator (MC) 

or Mouse Mover. If there are two muscles, use the MC with Dwell time enter command, or Dual Scan, or 

Morse Code with switches. If only one muscle effects a movement, use MC as a switch, or use a single 

switch (for scanning or Morse Code). 

2] If there is no discernible movement, but EMG activity can be detected from three muscles, use the MC.  

If two muscles, use the MC with dwell. If one muscle, use MC with switch. 

3] If there is no discernible movement or EMG activity, but the patient has coordinated eye movements, 

use an eye gaze system. 

4] If there is inadequate eye control, use EEG systems. 

5] If EEG is inadequate and an invasive system is acceptable to the patient, use local field potentials (LFP) 

recording systems from extradural or subdural locations provided these can be implanted before the patient 

loses all movement. 

6] If EEG is inadequate, an invasive system is acceptable and the patient has reached the stage of total 

paralysis, then use implanted electrodes. 

Let us take the ALS patient as an example. There are 30,000 ALS patients in the USA, with an annual 

incidence of about 6,000 per year, and a life expectancy of five years from time of diagnosis. Over 90% 

chose to die without a ventilator. Those with bulbar ALS (moving limbs but paralyzed respiration, speech 

and swallowing) more often accept a ventilator though the percentage is not known. ALS is not a terminal 

disease. Patients have been kept alive on a ventilator for decades. Stephen Hawking is an example.   

The decision regarding the communication device for an ALS patient is as follows: 

1. While the patient can still move, an augmentative device is used.   

2. At this time the patient needs to decide for or against a ventilator.   

3. If the decision is against, a device like the MC will suffice until death.   

4. If the patient decides in favor of a ventilator, a non-invasive EEG system should be initiated if adequate 

and available for the patient's needs.   

5. If an EEG system is not desired or available, a system for recording LFPs is implanted extra- or 

sub-durally while movements remain available for correlation with the LFPs.   

6. If the patient is fully paralyzed, LFPs probably can not be adequately set up.  An implanted electrode 

such as the Neurotrophic Electrode will then provide communication channels. 



 

 

56 

DEVELOPMENT OF IMPLANTABLE MICROELECTRODE ARRAYS AT THE NEURAL ENGINEERING LAB (NEL) AT THE UNIVERSITY 

OF MICHIGAN 

 

Daryl R. Kipke, Justin C. Williams, Kevin J. Otto, David S.  Pellinen, Jamille F. Hetke 

Department of Biomedical Engineering 

University of Michigan, Ann Arbor, MI  

 

Researchers in the Neural Engineering Laboratory (NEL) are working to develop and refine several 

types of microdevices to provide long-term, high-density, two-way communication channels to highly 

specific areas of the brain. This has recently resulted in a new class of thin-film polymer implantable 

microelectrodes for neural recording and electrical stimulation. These devices are notable for their 

flexibility and their surfaces that can be modified to receive specially engineered bioactive coatings. The 

NEL is also actively involved in the continued development of the class of silicon-based implantable 

microelectrode arrays that have been a hallmark of Michigan Biomedical Engineering and Electrical 

Engineering for many years (http://www.engin.umich.edu/center/cnct/). Several projects are working to 

extend these base MEMS technologies to include micro-drug delivery functionality.  These neural implant 

technologies provide the means to create reliable neural interfaces that enable the investigation and 

development of sophisticated brain-machine interface systems. The NEL is conducting several 

experimental studies to investigate sensory augmentation, neural control, and neural plasticity, each within 

the context of neuroprosthetic systems and brain-machine interfaces. Electrically induced and naturally 

evoked stimulus discrimination behavior are being investigated in animals using paradigms that combine 

natural sound stimulation and cortical microstimulation. The NEL website provides more information on 

these projects (http://www.eecs.umich.edu/NELab). 
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CONNECTING BRAIN TISSUE TO ROBOTS: DEVELOPMENT OF A HYBRID SYSTEM FOR 

STUDYING OF NEURAL PLASTICITY 
 

M. Kositsky, A. Karniel, K.M. Fleming, V. Sanguineti, S.T. Alford, F.A. Mussa-Ivaldi 

Department of Physiology 

Northwestern University Medical School, Chicago, IL 

 

The declared goal of early pioneers of computer science was to create a machine capable of imitating 

the human brain. Many researchers have adopted the reference to biology as a source of inspiration for 

creating artificial devices, particularly in the last two decades. More recently, a new perspective has 

emerged: the perspective of including biological elements within hybrid integrated systems. The idea of 

using "neurobiology as a technology" is rooted on the simple observation that the nervous systems of the 

simplest organisms still outperform the most advanced digital computers. In addition, there have been 

important advances in the techniques for delivering stimulations to brain tissue and for recording the activity 

of large neuronal populations. These advances allow us to think of neural nets not just as simulations of 

biological properties as possible operational descriptions of neural tissue. 

 

At the moment, the major obstacle toward the development of systems that incorporate neural elements 

is our own ignorance of how the brain tissue operates. But this limit should not prevent us from moving 

along this direction as, the creation of systems in which biological neurons interact with computers and 

artificial machines provides us with new tools for investigating the neurobiological underpinnings of 

computation. 

 

We have developed one such hybrid system establishing a bi-directional communication between the 

brainstem of a lamprey and a small mobile robot. The neural tissue is maintained alive and in working 

conditions by immersing it in a constantly refrigerated and oxygenated Ringer’s solution. The mobile robot 

acts as an artificial body that delivers sensory information to the neural tissue and receives command signals 

from it. The sensory information encodes the intensity of light generated by a fixed source. The closed-loop 

interaction between brain and robot generates autonomous behaviors whose features are strictly related to 

the structure and operation of the neural preparation. The comparison between the behaviors generated by 

this system and the behaviors generated by a model of its neural component is a tool for investigating the 

role of synaptic plasticity in sensory motor learning. 

 

In particular, we are interested in exploring the possibility of inducing controlled long-lasting changes 

in synaptic efficacy so as to effectively "program" a desired response of the robot to the light.  If neural 

tissue can be considered as a biological computer and if we have an understanding of the mechanisms of 

neural plasticity, this goal should be within reach. Our ability to establish bi-directional communications 

with neural tissue and to control the mechanisms of synaptic plasticity would have a great impact on the 

development of new powerful prosthetic devices and, at the same time, would provide us with a deeper 

insight on the processing of information within the central nervous system. 
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UNIVERSITY OF MICHIGAN DIRECT BRAIN INTERFACE:  2002 UPDATE 
S.P. Levine, J.E. Huggins, J.A. Fessler, W.M. Sowers, R.K.Kushwaha, S.L.BeMent, D.N. Minecan,  

O. Sagher, K.J. Leneway, J.J.Choi, S.J. Grikschat  

The University of Michigan, Ann Arbor, Michigan USA 

L.A. Schuh, B.J. Smith, K.V. ElisevichHenry Ford Hospital, Detroit, Michigan, USA  

 

A direct brain interface (DBI) is a human computer interface that accepts commands directly from the 

brain without requiring physical movement.  The University of Michigan Direct Brain Interface (UM-DBI) 

project seeks to detect voluntarily produced event-related potentials (ERPs) in human electrocorticogram 

(ECoG) as the basis for a DBI.   

Research subjects are patients in one of two epilepsy surgery programs who have had subdural macro 

electrodes implanted for clinical purposes unrelated to the research objectives.  The electrodes are 4 mm 

in diameter and arranged in grids or strips at distance of 1 cm center to center.  Each subject has up to 126 

subdural electrodes.   

Subjects perform simple voluntary movements in a self-paced (non-prompted) manner with at least 4 

seconds separating each repetition of the movement.  Each dataset contains ECoG related to approximately 

50 repetitions of the same action from each recording electrode. An ECoG database with data from 29 

subjects has been compiled.  Most previous work relied on off-line processing which necessitated the use 

of movement-related ERPs (instead of preferable motor imagery ERPs) so that movement onset (the trigger 

point) could be determined from muscle activity or another similar indicator and used to determine detection 

accuracy.  A limited number of on-line experiments employing feedback protocols have also been 

performed and are reported separately (see Huggins et al., 2002 in these proceedings).   

The basic detection method used by the UM-DBI has been a cross-correlation based template matching 

method.  Triggered averaging of the ECoG from the first half of a dataset is used to create templates of the 

ECoG corresponding to the action.  A template showing a distinct ERP is then selected and cross-

correlation is performed with the ECoG from the second half of the dataset (the test data).  Detections are 

defined when the cross-correlation value exceeds an experimentally determined threshold.  Valid 

detections (hits) are defined to be within 1 second before and 0.25 seconds after a trigger point.  Detections 

outside this time interval are considered false positives.  Detection accuracy is quantified by the hit 

percentage, which is the percentage of trigger points in the test data that were detected, and the false positive 

percentage, which is the percentage of the detections which are false positives.   

The most accurate off-line single channel detections have been 96% hits with 0% false positives and 

100% hits with 4% false positives.  Multiple channel detection methods have resulted in a detection 

accuracy of 100% with 0% false positives in some trials.  In preliminary feedback experiments, 3 of 6 

subjects were able to significantly improve the SNR of the selected ERP with the best subject also 

improving detection accuracy from 79% hits with 22% false positives to 100% hits and 0% false positives. 

Current work is focused in two general areas, improved signal processing techniques and feedback 

experiments, both aimed at increased detection accuracy. Work on signal processing techniques is being 

addressed by analyzing the underlying assumptions about ECoG signal characteristics in the current 

detection model and exploring means for improvement (see Sowers et al., 2002 in these proceedings). 

Additionally, detection methods based on event-related desynchronization and event-related 

synchronization are being explored and the implications of combining these methods with the cross-

correlation based template matching method are being evaluated (see Graimann et al., 2002 in these 

proceedings).  A new experimental feedback system is being designed which will provide feedback based 

on the cross-correlation value instead of on the SNR.  This feedback system will include a range of 

feedback programs that will start by providing the subject with basic feedback on the cross-correlation value 

and progress through several training steps to simulated operation of a communication system. 
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ASYNCHRONOUS BCI AND LOCAL NEURAL CLASSIFIERS 
 

José del R. Millán 

Joint Research Centre of the EC & Swiss Federal Institute of Technology Lausanne 

 

Over the last years we have developed a portable BCI, called Adaptive Brain Interface (ABI), based 

on the on-line analysis of spontaneous EEG signals measured with a few scalp electrodes (6 to 9, normally 

8) from which a local neural network classifier recognizes 3 different mental tasks. We have demonstrated 

publicly ABI on a number of occasions while subjects operated different brain-actuated applications, 

namely a virtual keyboard, a video game and a mobile platform (similar to a wheelchair). 

 

ABI relies on an asynchronous protocol where the subject makes voluntary self-paced decisions on 

when to stop doing a mental task and start immediately the next one. This make the system very flexible 

and natural to operate, and yields rapid response times -- ABI tries to recognize what mental task the subject 

is concentrated on every 1/2 second. In this respect, every user chooses the mental tasks that he or she finds 

easier, and the preferred strategies to accomplish them. Subjects select three out of the following mental 

tasks "relax", imagination of "left" and "right" hand (or arm) movements, "cube rotation", "subtraction", 

and "word association". 

 

Another characteristic of our approach is a mutual learning process where the user and the brain 

interface are coupled and adapt to each other. This accelerates the training process. The local neural 

classifier achieves error rates below 5% for 3 mental tasks, while correct recognition is 70% (or higher). In 

the remaining cases (around 20-25%), the classifier doesn't respond, since it considers the EEG samples as 

uncertain. The incorporation of rejection criteria to avoid making risky decisions is an important concern 

in BCI. From a practical point of view, a low classification error is a critical performance criterion for a 

BCI, for otherwise users would be frustrated and stop utilizing the interface. These classification rates 

(accuracy and error), together with the number of recognizable tasks and duration of the trials, yield a 

maximum transmission rate of approximately 2.0 bits/second. Normally, people reach the above-mentioned 

performances at the end of several days of moderate training (around 1/2 hour daily). But other subjects 

have also reached them in a single day of intense training. It is worth noting that one of these latter subjects 

is a physically impaired person suffering from spinal muscular atrophy. In total, we have worked with 

around 15 different subjects in a variety of conditions. 

 

ABI has a simple local neural classifier where every unit represents an EEG prototype of one of the 

mental tasks to be recognized. We have found that this local network performs better than more 

sophisticated approaches such as support vector machines and temporal-processing neural networks 

(TDNN and Elman-like). This performance is achieved by simply averaging the outputs of the network for 

8 consecutive EEG samples. The input to this classifier is the power spectrum in the band 8-30 Hz of each 

channel (standard fronto-centro-parietal locations) over the last second. 

 

ABI is used to select letters from a virtual keyboard on a computer screen and write a message. For our 

trained subjects, it takes 22.0 seconds on average to select a letter. This time includes recovering from 

eventual errors. ABI also makes possible the continuous control of a mobile robot generating non-trivial 

trajectories among different rooms in a house-like environment. A key idea to control the robot with just 3 

mental commands is to associate the user's mental tasks to high-level commands that the robot executes 

autonomously using the readings of its on-board sensors. Another critical aspect is that subjects can issue 

mental commands at any moment as ABI uses an asynchronous protocol. Experimental results show that 
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mental control of the robot is only 35% longer than manual control. 

CHALLENGES IN THE DEVELOPMENT OF A MINIATURIZED, SMART 

NEURO-PROSTHESIS SUITABLE FOR IMPLANTING INTO A BRAIN 
 

Mohammad Mojarradi1,David Binkley2, Benjamin Blalock3, Richard Andersen4, Norbert Ulshoefer2, 

Travis Johnson1, Linda Del Castillo1 
1 Jet Propulsion Laboratory, Californian Institute of Technology 

2 Department Electrical and Computer Engineering, University of North Carolina at Charlotte   
3 Department of Electrical and computer Engineering, University of Tennessee Knoxville 

4 Division of Biology, California Institute of Technology 

 

Passive microelectrode arrays have been widely used by researchers as a neuro-prosthetic tool to extract 

electrical signals from the brain. The microelectrode arrays are directly connected to measurement 

instruments through a large bundle of wires and are placed into the brain using surgical techniques. The 

large number of wires connected to current passive microelectrode arrays limits their widespread use as 

permanent neuro-prosthetic devices. In addition, there is an increasing demand for deploying 

microelectronics to develop a more sophisticated generation of neuro-prosthetic devices, capable of 

producing high quality electrical signals while significantly reducing the number of wires, or potentially 

eliminating wires entirely using an RF system. 

 

To achieve this goal, a multiplexing electronic chip can be designed to multiplex the signal from each 

electrode in the array into a single channel; hence minimizing the number of wires exiting the electrode 

array. However, prior to multiplexing, individual amplifiers need to be added to each electrode at the array 

to enhance its signal to noise ratio. To that end, the chip can be designed with amplifiers arranged in 

geometrical patterns corresponding exactly with the electrodes of the array. Advanced assembly techniques 

can, in turn, be used to directly attach the chip to the passive microelectrode device. A wireless transmitter 

can be attached to the multiplex line, to transmit the signal from the brain through an RF link. The same RF 

link can also be used for powering the chip.  

 

Features offered by a miniaturized device that combines analog electronics with the microelectrode 

array will come at a price. For one thing, power consumed by the active electronics will raise the 

temperature of the neuro-prosthetic device and could potentially destroy the neighboring biological tissue. 

And secondly, energy absorbed by the tissue because of the wireless features of the device (wireless 

coupling of power and wireless transmission of the signals to and from the implanted prosthesis) can be a 

potential source of long-term tissue damage. 

 

The design of the electronics for the smart neuro-prosthesis is therefore constrained by micro-power 

levels that would prevent the excessive temperature rise (less than 1 deg centigrade) of the device and the 

choice of transmission frequencies that would minimize the absorption of radio frequency energy by the 

tissue. The signal to noise performance of traditional analog circuits is directly proportional to their 

operating power. To produce a high signal to noise ratio, non-traditional analog circuits solutions need to 

be developed. 

 

The absorption of RF energy by the tissue is directly proportional to the increase in RF frequency. 

Minimizing the RF transmission frequency to reduce the energy absorption by the tissue will impact the 

transmission data rate. Hence, chip signal processing and data compression will need to be deployed to 

enhance the signal quality. Employing these functions in turn impacts the already small power budget and 
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makes it even more difficult to develop a perfect neuro-prosthesis solution. 
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HUMAN-COMPUTER INTERACTION RESEARCH AT THE GSU BRAINLAB 
 

Melody M. Moore, M. Todd Kirby 

Georgia State University, Atlanta, GA 

 

The overall goal of the GSU BrainLab is to determine the most effective paradigms of human-computer 

interaction for direct control of a computer using brain signals.  Our central research focus is on applying 

brain-computer interface (BCI) technologies to real-world problems. We aim to provide significant quality-

of-life improvement to users with severe disabilities as well as studying ways of utilizing brain-computer 

interfaces for everyone. The BrainLab currently has ongoing projects in several BCI and assistive 

technology areas: 

 

New User Interface Control Paradigms 

 

The aim of this research is to explore the human-computer interaction field to determine possibilities 

for alternate paradigms of brain signal control (in addition to proportional 2-D spatial navigation such as a 

mouse emulator).  We are studying several approaches, including hysteretic ("nudge and shove" 

thresholding) control, which allows several control signals to be generated from a continuous neural signal. 

We have also collaborated with researchers from Georgia Tech to adapt 2-D spatial interfaces to serialized 

interfaces, which can be then neurally controlled.  We adapted several applications, including a web 

browser, for serialized access. We are also studying logical vs. proportional control to improve speed and 

accuracy of BCI control. 

 

BrainTrainer - Subject Training 

 

The BrainTrainer project is researching the most effective ways of teaching a person to control brain 

signals in order to interact with a device.  The BrainTrainer toolset allows trials to be composed, providing 

simple tasks such as targeting, navigation, selection, and timing that can be combined to produce an 

appropriate-level task for a particular subject. It also allows the researcher to incorporate different forms of 

biofeedback (visual, auditory, and haptic).  BrainTrainer automatically instruments the resulting 

application for data recording such as error rates, speed, and accuracy of task performance.  We are 

working with Neil Squire Foundation to determine the atomic tasks, benchmarks, and standardized data 

formats that BrainTrainer will support. 

 

Neural Art - Biofeedback 

 

The Neural Art project is exploring different methods of representing brain signals, both for 

biofeedback and training purposes, and for creative expression and recreation.  The Neural Music program 

we have developed translates brain signal and brain signal patterns directly to MIDI, allowing for a tonal 

representation of the signal.  This has been tested in offline analysis with brain signal recordings and is 

currently being ported to allow real-time presentation of the auditory data.  We also implemented a signal 

visualizer, which allows the signal to be represented graphically according to configurable signal 

characteristics.  

 

Quality of Life Applications 

 

· Neural Internet - We have developed a neurally-controlled web browser that serializes the spatial 
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internet interface and allows logical control of a web application. We have also developed a neurally-

controlled email program that accompanies the web browser, allowing neural signals patients to send 

and receive written communications from the internet. 

 

· Aware 'Chair -  The "Aware 'Chair" is a context-aware intelligent power wheelchair which integrates 

environmental control, communication, and multilevel prediction based on context and user history.   

The communication and environmental control systems are informed by environmental sensors, user 

history, time of day, medical status and other information in order to predictively narrow the selection 

space, thereby improving user performance.  We are currently adapting the Aware 'Chair for neural 

control, working with UC Berkeley to incorporate their prediction algorithms. 

 

Collaborations 

 

The GSU BrainLab currently enjoys active collaborations with researchers at the Wadsworth Center, 

Neil Squire Foundation, Georgia Institute of Technology, and the University of California at Berkeley.  

Our funding sponsors include the National Science Foundation, the National Institutes of Health, DARPA, 

and Georgia State University.  
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GRAZ-BCI: STATE OF THE ART AND CLINICAL APPLICATION 
 

C. Neuper, G. Müller, G. Pfurtscheller 

Dept. of Medical Informatics, Institute for Biomedical Engineering, 

University of Technology Graz, Austria 

 

In the last decade the work on the Graz-BCI was dedicated to differentiate between two or more brain 

states and EEG patterns, respectively, related to motor imagery in predefined time windows (synchronous 

BCI). On the one hand, different methods of parameter estimation were investigated, on the other hand, a 

number of classifiers were tested. It has been demonstrated that the discrimination of oscillatory EEG 

components, associated, for example, to two different types of motor imagery, is possible with a high 

classification accuracy (Pfurtscheller and Neuper, 2001). 

 

An unlikely harder task is the asynchronous classification of one specific transient brain state in the 

ongoing EEG. In this approach, a continuous analysis of brain signals is performed to detect transient 

changes in oscillatory EEG components. In some preliminary experiments investigating EEG data recorded 

during self-paced finger and foot movements, we obtained very promising results that show that movement 

performance can be predicted not only by analyzing the MRPs (Birch and Mason, 2000), but also by 

considering the dynamics of oscillatory brain activity. 

 

Besides this, further projects, which are presented below, were dedicated to investigate the application 

of the standard Graz-BCI system in patients. Since most of the previous studies were performed on healthy 

volunteers, there was a need to evaluate the performance and acceptance of such a classifier-based BCI 

system in severely paralyzed patients. In detail, two projects are reported: (i) BCI training to operate a 

'Virtual Keyboard' and (ii) BCI-based operation of a hand orthosis. 

 

(i) BCI training to operate a 'Virtual Keyboard' 
This project (done in cooperation with N. Birbaumer and A. Kübler, Institute of Medical Psychology 

and Behavioral Neurobiology, University of Tübingen, Germany) aimed at training a patient diagnosed a 

severe cerebral palsy to use the Graz-BCI for verbal communication. Over a period of several months EEG 

feedback training was performed at the patient's home (clinic), supervised by the distant laboratory with the 

help of a 'telemonitoring system' (Müller et al., 2002). On-line feedback computation was based on 

single-trial analysis and classification of specific band power features of the spontaneous EEG. The patient 

learned to 'produce' two distinct EEG patterns and to use this skill for BCI-controlled spelling. Significant 

learning progress was found as a function of training session, resulting in an average accuracy level of 70% 

(correct responses) for letter selection. 'Copy spelling' was performed with a rate of approximately 5 

decisions per minute (Neuper et al., 2002).  

 

(ii) BCI-based operation of a hand orthosis 
In a further project, an electrical hand orthosis in a tetraplegic patient was controlled by EEG activity 

using a synchronous BCI design and 2 types of motor imagery. After a number of training sessions with 

variations of the motor imagery strategy over a time period of several months, imaginations of foot 

movement versus imagination of right hand movement achieved a classification accuracy of close to 100% 

(Pfurtscheller et al., 2001). Inspecting the EEG signals, it was found that foot motor imagery induced long 

trains of 17- Hz beta oscillations focused on the electrode position on the vertex. Based on these induced 

17-Hz oscillations a simple brain switch was constructed and used to operate the hand orthosis 

asynchronously. The patient was able to perform an opening and closing operation in about 11 seconds.  
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EEG PHASE LOCKING DURING COGNITIVE PROCESSING 
 

Paul Nunez 

Brain Physics Group, Dept of Biomedical Engineering 

Tulane University, New Orleans, LA 

 

The physiological mechanisms at cellular levels underlying EEG are outlined. A single conceptual 

framework in which to view EEG, ERP, MEG, fMRI and PET is proposed. Neocortical dynamics and 

behavior/cognition are viewed in the context of cell assemblies (or neural networks) embedded within 

synaptic action fields. These so-called synaptic action fields are simply the numbers of active synapses per 

unit volume, independent of their functions. The introduction of such fields to neuroscience has two 

complementary motivations: 1) To provide a direct link between synaptic or action potential activity and 

scalp potentials 2) To suggest the importance of top-down interactions between the synaptic fields and 

network activity, analogous to top-down cultural influences on social networks. Complex dynamical 

systems are typically characterized by both top-down and bottom-up interactions, called circular causality 

in the field of Synergetics, for example. A similar picture is proposed for neocortex in which the so-called 

localized functional regions obtained with fMRI and PET are viewed as hubs in the various networks. 

 

Brains apparently operate at various intermediate dynamic states between the extremes of global 

coherence (widespread neural masses acting together) and functional localization (regional tissue acting 

independently). Differences in this local-global “balance” are associated with different cognitive or 

behavioral states. In this context, several similar measures of neocortical dynamics are discussed, 

covariance, coherence, phase synchronization and bicoherence.  

 

Every cognitive brain state may be identified with some combination of dynamic measures, the 

dynamic brain state, including the above measures of local versus global dominance. For example, the 

coherence or covariance between every electrode pair (2016) in a 64-channel recording might be used to 

define dynamic brain state. With the covariance measure, normally applied to transient ERP’s as in the 

work of Alan Gevins and colleagues, spatial covariance patterns are obtained at different latencies from the 

stimulus. With the coherence measure, applicable to spontaneous EEG or steady-state evoked potentials as 

in the works of Petsche, Thatcher, Silberstein, Pfurtscheller, Lopes da Silva, Schack, Nunez and others, 

spatial coherence patterns are obtained in specific frequency bands.  

 

Any such analyses of spatial patterns are limited by the distortions of volume conduction and reference 

electrode. High-resolution EEG provides estimates of dura surface potential independently of assumptions 

about the nature of brain sources. The accuracy of high-resolution EEG is discussed briefly. High-resolution 

EEG data showing various measures of phase locking in the theta and upper alpha bands during mental 

calculations is presented in the context of the proposed conceptual framework 
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REAL-TIME EEG EVENT DETECTION FOR AUGMENTED HUMAN MACHINE 

INTERACTION 
 

Lucas Parra1, Paul Sajda2 
1Adaptive Image and  Signal Processing, Sarnoff Corporation 
2Department of Biomedical Engineering, Columbia University  

 

 

Recent research in neuroimaging has identified electroencephalography (EEG) signals that are 

correlated with cognitive processing states such as attention, memory encoding and recall, perceived 

reaction errors, and motor intent. We envision that real-time monitoring of EEG brain activity has the 

potential to revolutionize human-machine interaction by making interfaces adaptive to such mental states. 

 

We are developing, in this context, a robust non-invasive brain-computer interface (BCI) that 

measures individual cognitive events in real-time and maps brain activity to generate a feedback signal 

used for monitoring and interface control. 

 

We aim to demonstrate, using three different candidate EEG signals, the utility of the BCI for 

improving subject performance in the following scenarios: 

 

(1) Perceived error and conflict. Error related negativity (ERN) in EEG has been linked to perceived 

response errors and conflicts in decision making. We are developing  a BCI system to measure the ERN 

and predict task-related errors. The system is being evaluated as an automated real-time decision checker 

for time-sensitive control tasks. Detected reaction errors will be corrected or "flagged," requiring 

additional confirmation before execution of critical commands. 

 

(2) Working memory encoding. Transient modulation of oscillations in the theta (4-8 Hz) and gamma (20-

30 Hz) bands, recorded using EEG and magnetoencephalography (MEG), have been implicated in the 

encoding and retrieval of semantic information in working memory. We are developing a system which 

exploits these neural correlates of semantic processing to construct an automated "tutor" that will re-

enforce semantics in memory intensive tasks. When the tutor detects problems with semantic information 

processing it can alert the subject of anticipated memory recall deficits, repeat portions of the training 

sequence, etc. 

 

(3) Motor imagery. A number of neural signals have been shown to correlate with motor intent, including 

lateralized alpha (10-12 Hz) band activity in EEG and short transient pulses in MEG over the motor 

cortex. We are developing a system to predict, on a single trial basis, motor intent through robust and 

differential classification of motor imagery generated by a subject.  This will enable an intuitive, hands-

free, communication channel that bypasses the motor system.  

 

We will report initial results for ERN detection/error correction and prediction of motor intent via 

motor imagery. 
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SIGNAL PROCESSING METHODOLOGIES TO MODEL THE RELATION BETWEEN SPIKE 

TRAINS AND HAND MOVEMENTS FOR BRAIN MACHINE INTERFACES 
 

José C. Principe 

University of Florida, Gainesville, FL 

 

The University of Florida Computational NeuroEngineering Laboratory (CNEL) is part of a five 

members consortium (Duke, MIT, SUNY, Plexon Inc.) lead by Duke University that is developing closed-

loop brain machine interfaces (BMI). The ultimate goal is to allow patients suffering from paralysis or 

other neurological disorders to control robotic prosthetic limbs through thought. 

One of the issues for the feasibility of BMIs is the bandwidth/accuracy achievable with EEG scalp 

recordings.  Unlike these approaches, we are using invasive recording techniques pioneered by Nicolelis 

et al at Duke [1] to test their suitability to build BMIs.  Spike trains from large arrays of microwire 

electrodes implanted in the pre motor, primary motor and posterior parietal cortices of nonhuman primates 

are recorded at Duke University while the primates performed 3-D reaching tasks. These recordings of 

large neuronal assemblies provide mesoscopic information while maintaining high temporal and spatial 

resolution. Electrode outputs processed by spike detection and sorting techniques yield firing patterns of 

up to 104 single neurons. For real-time processing of the data, neuronal firing counts in 100ms windows 

are used as inputs from which control signals are derived. 

The translation of these signals into control commands is approached both from an input-output (I/O) 

modeling framework and from a state estimation perspective. We assume there exists an unknown system 

that maps the firing counts to hand position in 3-D space, and by observing the inputs and outputs we can 

optimally adapt the model to approximate the desired relationship. The CNEL lab has investigated three 

I/O models:  Wiener filtering, switching local linear models, and nonlinear recurrent neural networks 

(RNN). The Wiener filter assumes a linear relationship between the neuronal firing counts and hand 

position. The filter output is simply a weighted sum of delayed versions of the firing counts achieved by 

optimal projection to a linear space. The multiple linear model method assumes that the firing counts that 

produce a desired hand trajectory are piecewise stationary. Multiple linear FIR filters are trained in 

parallel and compete to become specialized for each piecewise stationary segment. The RNN adapts a 

nonlinear model to map firing counts to hand position. This model is a modified version of the multilayer 

perceptron (MLP) and contains feedback connections in its hidden layer. State feedback allows for 

continuous representations on multiple timescales and is a powerful method to extract temporal 

information from neuronal firing counts. The state estimation approach uses a Kalman filter to model the 

hand position, speed and acceleration as states given the spike trains as noisy observations. 

The framework for assessing the results of a BMI is not yet fully established. Model performance to 

predict hand position from neuronal firing counts is evaluated with three different measures: correlation 

coefficient, signal to error ratio (SER), and target acquisition plots. The correlation coefficient computed 

over sliding windows quantifies how well the actual and predicted hand trajectories are linearly related. 

The SER, defined as the square of the desired signal divided by the square of the estimation error, gives a 

measure of the accuracy of estimated position in terms of the error variance. The third measure is a 

graphical technique which places the target location at the center of a 3-D coordinate system. The error 

associated with each direction (x, y, z) is plotted on its respective axis. Errors that form a tight cluster of 

points around the target indicate successful target acquisition. 

In this presentation I will present comparisons among all these models and raise some of the 

important signal processing problems in this approach. 

[1] Wessberg, J., C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin, J. Kim, S. J. 

Biggs, M. A. Srinivasan and M. Nicolelis (2000). "Real-time prediction of hand trajectory by ensembles 
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of cortical neurons in primates." Nature 408(6810): 361-365. 

A MINIATURE, WIRELESS TWO-CHANNEL EEG FOR BRAIN COMPUTER INTERFACE 
 

Robert N. Schmidt, PE 

Cleveland Medical Devices Inc. 

 

A new, low noise, two-channel wireless data acquisition system used to monitor 

electroencephalogram (EEG), on humans for research purposes has been developed by Cleveland Medical 

Devices Inc.  It is called the BioRadio® Jr. 

 

The system consists of a small compact integrated transmitter with a form factor that can be used on a 

headband, or mounted on a hairpin.  The device includes, two preamplifiers, two amplifiers, a state-of-

the-art analog to digital (A/D) converter, a microprocessor, and a MicroSynthTM RF radio transmitter.  It 

weighs less than one-half ounce, is 1.3” x 0.9” x 0.3” in size, and can transmit digital EEG signals to a 

nearby receiver to a distance of about 50 feet through walls.  This 50-foot range allows users to be 

untethered, allowing them to move freely about the bed, home, lab, or ward without entangling wires. 

 

The receiver attaches to the serial port of any personal computer (PC).  The data stream format at the 

serial port is available to users to be interfaced with other Brain Computer Interface (BCI) software.  

Data can also be viewed in real-time using BioCapture software and simultaneously saved to the PC hard 

drive.  ASCII conversion tools allow data analysis in software packages such as MATLAB®, 

LabVIEWTM, Excel, and .edf sleep software.   

 

Contact:  Robert N. Schmidt, President, Cleveland Medical Devices Inc., 11000 Cedar Ave. 

Cleveland, OH 44106, rschmidt@CleveMed.com, 216-619-5925, cell: 216-374-7237, 

www.CleveMed.com. 

 

 



 

 

70 

CONTROLLING REACTIVE RESPONSES AROUND NEURAL PROSTHETIC DEVICES 

 

W. Shain1, L. Spataro1, J. Dilgen1, K. Haverstick2, S. Retterer3,M. Saltzman2, 

 M. Isaacson3, J.N. Turner1,  

1Wadsworth Center and Dept of Biomedical Sciences 

 School of Public Health, Albany NY  
2Dept of Chemical Engineering or 3School of Applied and Engineering Physics, 

 Cornell University, Ithaca NY 

 

Reliable use of neural prosthetic devices is compromised by reactive responses that result in electrical isolation. Early reactive 

responses initiated by device insertion have many hallmarks of an inflammatory response and may be initiated by the process of device 

insertion, including unavoidable damage to the brain’s microvasculature. Sustained responses develop as early responses wane. We have 

observed that sustained responses appear to result from tissue-device interactions and have been observed as long as three months 

following device insertions.  To determine if altering inflammatory mechanisms can affect these reactive responses, we have examined 

the effects of peripheral and local applications of dexamethasone. This synthetic glucocorticoid activates specific receptors found in a 

variety of cells causing changes in gene regulation. Peripheral injections were made as subcutaneous injections in ethanol (200 μg/kg) and 

administered either as a single injection on the day of device insertion or for a total of six daily injections.  Several limitations of this 

method are that long-term treatment requires repeated injections, drug exposure is episodic; and treatment does not specifically target the 

CNS.  Local drug delivery, achieved by microfluidics or slow release of compounds from polymers, can overcome these shortcomings.  

In a first step to demonstrate the effectiveness of local, long-term release, ribbons of poly(ethylene-co-vinyl acetate) (EVAc) (~ 400 x 400 

μm2 and 2 mm long) containing dexamethasone (35% by weight) were inserted into premotor cortex of anesthetized 100-g rats using a 30-

gauge needle. Immunohistochemistry and laser-scanning confocal microscopy were used to describe changes in astrocytes (GFAP), 

microglia (CD11b), and cells of the microvasculature (laminin) in 100 μm thick tissue slices. Samples were prepared one and six weeks 

following device insertions, representing the early and sustained responses, respectively. In general, reactive responses around control 

ribbons were similar to those observed around silicon devices with robust responses and accumulation of extracellular material 

immediately around inserted devices. Responses around control EVAc ribbons differed from those observed around silicon devices by the 

presence of large cavities. Dexamethasone treatment modified both early and sustained reactive responses. Peripheral injects resulted in 

greatly reduced astroglial responses, while microglial and vascular responses were either unaffected or increased. Local drug delivery using 

ribbons containing dexamethasone greatly attenuated all cellular responses of both early and sustained responses. At both times tissue 

closely packed around the ribbons, though relatively few cells were observed attached to ribbons. Dexamethasone release from EVAc 

ribbons decreased over time with significant amounts of release measured 40 days after initiation of measured release into physiological 

saline. Calculated drug concentrations drop off exponentially in the region immediately around insertion sites with initial areas of significant 

drug concentrations extending as far as several millimeters into the surrounding brain tissue. These results demonstrate that while 

peripheral injections of anti-inflammatory drugs can produce moderate effects on both early and sustained reactive responses following 

insertion of microfabricated prosthetic devices, local drug release may provide more complete and long-term control of  cellular 

responses. Thus coating of devices with slow release materials or provisions for long-term drug infusion through microfluidic channels may 

provide a means to insure the chronic function of neural prosthetic devices. 
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SOLVING THE WIRELESS DATA COMMUNICATION PROBLEM BETWEEN BRAIN 

IMPLANTS AND COMPUTER 
 

Mingui Sun 

Laboratory for Computational Neuroscience 

Departments of Neurosurgery, Electrical Engineering, and Bioengineering 

University of Pittsburgh, Pittsburgh, PA 

 

There have been a number of previous or ongoing research studies on brain-computer interface.  This 

research mainly target the access/delivery of meaningful signals from/to the human cortex so that the 

information in the bioelectric form can be converted to/from the information in the digital form.  As a 

result, sophisticated electrodes and implantable chips performing such a conversion have been 

investigated and several prototypes of these devices have been demonstrated. However, one extremely 

important, but difficult, problem has not yet been addressed: Suppose that we have successfully converted 

the information, how do we pass this information between the implanted brain chip and the computer? In 

the current experimental settings, wires are utilized. This type of connection is clearly unacceptable in the 

outside world where reduction in mobility and high risk of infection rule out its feasibility.  Wireless 

radio frequency (RF) connection provides an alternative. However, its feasibility is in serious question due 

to the following limitations: 1) RF antenna and certain circuit elements (e.g., induction coils) increase the 

size and the mass of the implantable device; 2) the conversion between signal and RF waves requires a 

considerable amount of energy which is drained from the internal battery within the implantable device, 

and this battery is difficult to recharge or replace; and 3) the ionic fluid of biological tissues, such as the 

cerebrospinal fluid (CSF), is highly conductive. As a result, transmitting an RF signal within the head is 

similar to transmitting a radio wave through an electrically shielded room.  Such transmission is possible 

only when the RF signal is strong and its frequency is relatively low, which requires more energy 

consumption and larger capacitors and inductors, compounding the first two problems, and promoting 

adverse biological consequences due to the strong internal emission which generates heat and other 

effects.  Currently, the RF data link has been limited to applications where the device size is large and the 

implantation time is short. 

There exists a natural passageway of information which has been overlooked. The ionic fluid in the 

biological body conducts electrical current which, when intentionally manipulated, is capable of passing 

information.  This conduction is called volume conduction. Electrostatic laws of physics state that a 

current source within a volume conductor results in an electrical potential distribution within and on the 

surface of the conductor. This potential can be easily measured by affixing a pair of stick-on electrodes on 

the scalp. We have been investigating this volume conduction based data communication method for 

several years. Our experiments on theoretical models, physically constructed models, and animal 

experiments have received encouraging results.  We found that the volume conduction based system has 

the following advantages: 1) The strong shielding effect of ionic fluid in the body is no longer a problem.  

Instead, it is now employed as the information carrier.  2) The volume conduction link is simpler than the 

RF link, allowing an aggressive reduction in size and weight.  3) It does not require signal conversions 

to/from RF, thus this approach is highly energy-efficient, potentially enabling a battery that lasts for a life 

time. 

Acknowledgment: The following individuals have made significant contributions to this research: Robert 

J. Sclabassi, M.D., Ph.D., Marlin Mickle, Ph.D., Chung-Ching Li, Ph.D., Donnald J. Crammond, Ph.D., 

Ellizbath Tyler-Kabara, M.D., Wendy Fellows, Brian L. Wessel, Paul A. Roche, Qiang Liu, Erxiong Lu, 

and  Wei Liang. 
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Abstract 
Recent BCI research carried out in our groups has focused on two aspects. The main BCI 

contributions focus on improving standard machine learning approaches by utilizing 

probabilistic principles. We also design experimental settings which can be used for reliable 

user-machine communication and user assistance. 

 

Probabilistic models for BCI systems 
Probabilistic models can be used to describe many models that have been applied to offline and adaptive 

BCI systems. Examples are Hidden Markov models, that have been successfully applied to BCI systems 

([OGNP01]). Probabilistic models have also been quite popular tools in the machine learning and statistics 

community. Recently these communities have, in particular, come up with algorithms that allow inference 

of very complex models. Hence we can benefit from those findings that allow us to extend these classical 

time series models. We have recently evaluated two such generalizations in the context of BCI systems. 

Coupled HMM's are generalizations of ordinary HMM's, where two hidden state sequences are 

probabilistically coupled using arbitrary lags. In ([RGR02]) these models have been applied to movement 

planning and shown to outperform classical HMM's. 

 

Another modification of HMM's was proposed in [SR02]. Probabilistic principles suggest that 

classifications based on extracted features have to regard those as latent variables. Hence inference and 

predictions are required to marginalize over this latent space. We applied this model to classification of 

different cognitive tasks. These experiments have shown that integrating out  feature uncertainty 

significantly outperforms classifications obtained when conditioning on feature estimates. 

 

Probabilistic models can also be used to describe algorithms for adaptive BCI systems. A method which 

proposes such an approach is shown in [SRS], this workshop. The method uses variational Kalman filtering 

to infer an adaptive nonlinear BCI-classifier. Variational methods are attractive for BCI systems because 

compared with Laplace approximations (as e.g. used by [PR99]), they allow for more flexibility and, as 

opposed to particle filters, they still provide a parametric form of the posterior. A parametric form of the 

posterior is important since it allows efficient implementations. Results with the variational Kalman filter 

classifier suggest that it significantly outperforms the corresponding offline method. Consequently, our 

current research direction aims to obtain adaptive methods that implement the ideas we found to be useful 

for offline BCI systems.  

 

BCI-Applications and experimental issues 
We are currently working on two different applications. On one hand we are interested in the classical 

man machine communication channel. Experiments reported in [CSS + 01] compare the communication 

bandwidth that can be achieved using different cognitive tasks. It was found that other task pairings result 

in slightly better correct classification rates as the classical imagined motor task. The main conclusion is 

that we might significantly increase the bit rate of the BCI system by using more than two cognitive tasks. 

 

Our second project's aim is to develop an immediately effective brain computer interface. Using 
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adaptive inference techniques, we obtain a system that does not require training before the system can be 

applied. To achieve this we detect and classify state changes in the motor cortex areas of the brain which 

are associated with movement planning. Another major focus of this project is to investigate the effect of 

different biofeedback mechanisms. As part of this study we look at audio and tactile as well as visual forms 

of feedback and evaluate the effect on the overall system performance. 
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TRAINING CORTICAL CELLS TO PRODUCE BETTER DIRECTIONAL CONTROL 

SIGNALS WITH AND WITHOUT PHYSICAL LIMB MOVEMENTS 
D.M. Taylor1, S.I. Helms Tillery1, A.B. Schwartz1,2 

1 Bioengineering, Arizona State University, Tempe, AZ 
2 The Neurosciences Institute, San Diego, CA 

 

We have recorded cortical units on implanted microwire electrode arrays in the motor and premotor 

cortical areas in macaques. Some channels have recorded units stably for over two years. The animals used 

these signals in real-time to move a virtual reality cursor to targets in 3D space. Two monkeys controlled 

the 3D cursor movements with their cortical activity while their arms were free to move, and two monkeys 

did this with both arms restrained. 

In the arms-free experiments, a modified population vector was used to translate cortical activity into 

cursor movement in real-time. The animals used visual feedback of the cursor position to make on-line error 

corrections to their center-out trajectories. This allowed them to improve their target hit rate over that of 

trajectories created off-line from cortical signals recorded during similar hand-controlled center out 

movements. The animals showed significant improvement within each day and across days in both a slow 

and a ballistic 3D movement task  

In the experiment where both arms were restrained, a co-adaptive algorithm was used to translate 

cortical activity into cursor movements. This algorithm does not rely on any a priori knowledge of the 

brain’s movement-related modulation patterns, and, therefore, could be implemented in immobile human 

patients. In the co-adaptation process, the movement prediction algorithm adapts to the brain activity while 

the subject attempts to make a sequence of brain-controlled calibration movements. The subject then uses 

visual feedback of these attempted brain-controlled movements to further modify its cortical activity and 

improve 3D cursor control.  

In the arms-restrained animals, this co-adaptive process resulted in movement-related modulation 

patterns which were radically different from those seen during normal arm movements. Cortical tuning 

functions changed their preferred directions, became more cosine tuned, increased their modulation range, 

and decreased their movement-to-movement variability. This resulted in more accurate movements and a 

more uniform level of control throughout the workspace compared to the non-adaptive arms-free 

experiments. Off-line analysis using maximum likelihood estimation also showed these new cortical 

encoding patterns predicted the intended target better than the cortical activity recorded during regular 

center-out arm movements. 

With regular practice, these beneficial changes significantly increased across days. Additionally, the 

subject’s muscle activity during brain-control declined with regular practice. This daily increase in 

beneficial tuning function changes and the reduction in muscle activity were matched by a significant 

improvement in brain-controlled movement accuracy and reliability across days. 

The co-adaptive algorithm used in the arms-restrained experiment allowed the subjects to encode 

movement with new preferred directions that were unrelated to those used during physical arm movements. 

However, in these novel movement encoding schemes, units that were located close to each other in the 

cortex usually maintained correlation patterns between units which were similar to those seen during hand-

controlled movements. This suggests a local modular organization which may have implications for the 

design and spacing of electrodes for neural prosthetic use. Wider spacing between electrodes may yield 

more signals which can be independently controlled by the subject. 

The animals were also tested for their ability to transfer the center-out brain-control skills to more 

practical applications. The movement prediction algorithm was held constant in a non-adaptive state, and 

subjects were able to make long continuous sequences of movements to novel as well as trained target 

positions. Additionally, one subject was trained to reliably move a brain-controlled robot to different 3D 
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target positions to get rewards. 

MULTIMODAL NEUROELECTRIC HUMAN-COMPUTER INTERFACE DEVELOPMENT 
 

Leonard J. Trejo, Kevin R. Wheeler, Charles C. Jorgensen, Roman Rosipal 

NASA Ames Research Center, Moffett Field, CA 

 

This project aims to improve performance of NASA missions by developing multimodal neuroelectric 

technologies for augmented human-system interaction. Neuroelectric technologies will add new modes of 

interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the 

bandwidth of human-system interaction. The research builds on recent feasibility demonstrations of 

electromyographic (EMG) and electroencephalographic (EEG) methods, which bypass muscle activity and 

draw control signals directly from the human nervous system. The broad objectives of the project are to: a) 

develop new modes of interaction that operate in parallel with existing modes such as keyboards or voice, 

b) augment human-system interaction in wearable, virtual, and immersive systems by increasing bandwidth 

and quickening the interface, c) enhance situational awareness by providing immediate and intimate 

connections between the human nervous system and the systems to be controlled or monitored.  Our 

specific goals are also threefold: a) a signal acquisition and processing system for reliable EMG-based 

neurocontrol methods for data visualization and manipulation tasks, b) EMG-based automatic recognition 

and tracking of continuous human gestures, c)  evaluation and feasibility testing of EEG-based 

neurocontrol methods suitable for use in parallel with other modes of communication and control using μ-

rhythm signals recorded from motor cortex and other, nonlinear measures of EEG dynamics. 

 

We have made progress in four areas.  First we have developed real-time pattern recognition 

algorithms for decoding sequences of forearm muscle activity associated with control gestures.  A real-

time system successfully used these algorithms to control a flight simulator and a virtual numeric keyboard. 

Second, we have developed and compared signal processing strategies for open- and closed loop tasks 

involving EEG-based tracking of real and imaginary motion. The tasks involved either real or imaginary 

arm motion without feedback (open loop) or controlling a visual display of a needle gauge or a surface 

vehicle (Mars rover).  EEG was recorded from three subjects with arrays of 4 to 128 channels, and spatially 

decomposed into orthogonal components.  Time series analysis or frequency analysis of the component 

signals were tested and compared for efficacy of tracking motion and EEG desynchronization effects. We 

replicated known effects of mu-rhythm based control and compared this to several other methods, including 

spectral entropy, wavelet entropy, and a nonlinear dynamic analysis known as coarse entropy rate.  In some 

cases, we found that nonlinear analysis was more sensitive to motion as compared with mu-rhythm power 

and other methods. Third, we have also developed a flexible computation framework for neuroelectric 

interface research, using the Linux operating system.  The frameworks allow for modular construction of 

real-time systems for data processing and control, and for rapid prototyping of new algorithms. Fourth, we 

have partnered with a private company to develop non-contact E-field sensors, which measure EMG or 

EEG signals without resistive contact to the body.  Preliminary data show that these sensors can faithfully 

record signals that track the surface EMG or EEG changes measured by traditional resistive electrodes. 
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 WADSWORTH BCI RESEARCH AND DEVELOPMENT PROGRAM 

  

 JR Wolpaw, DJ McFarland, TM Vaughan, G Schalk, I Goncharova, WA Sarnacki, HZ Sheikh 

 Wadsworth Center 

 New York State Department of Health and State University of New York 

 Albany, New York 

 

The principal goal of the Wadsworth BCI Program is a new non-muscular communication and control 

technology for people with severe motor disabilities, particularly those who cannot use conventional 

assistive technologies, which require some voluntary muscle control. 

 

The program focuses on an EEG-based BCI that uses mu and beta rhythms generated in sensorimotor 

cortex.  People with and without motor disabilities learn to use these rhythms to control movement of a 

cursor on a video screen.  Recent and current work is continuing and expanding this focus.  The principal 

aims are: 

1. The basic protocol is short- and long-term intra-subject comparison of promising alternative methods.  

Recent improvements in spatial filtering, signal feature selection, and online adjustment of translation 

parameters have yielded information transfer rates of 10-25 bits/min (e.g., a user can choose among 4 

selections in 4 sec with 90% accuracy). 

2. To further improve BCI performance by incorporating additional signal features into the algorithm that 

controls cursor movement and target selection.  Possible additional features include slow cortical potentials 

and an error potential that occurs when well-trained users make a mistake.  The protocol is to assess these 

time-domain features during the course of standard mu or beta rhythm-based cursor control, and, based on 

the results, to incorporate them into cursor control and assess the effect on performance. 

3. To test the current BCI system in people with severe motor disabilities and demonstrate that it can provide 

them with reliable basic communication.  The prototype application is a simple word-processing program, 

and the first target population are people with early- or middle-stage amyotrophic lateral sclerosis. We hope 

to show that they can learn to use the BCI and can continue to use it as their disease progresses. 

4.  To continue development of BCI2000, a general purpose BCI system that can use any brain signals 

(from single neurons to slow cortical potentials), signal processing methods,  translation algorithms, output 

devices, and operating protocols.  Each of the four BCI2000 components (i.e., signal acquisition, signal 

processing, output device, operating protocol) can be modified without affecting any other component.  

BCI2000 facilitates comparison, combination, and optimization of signals, methods, outputs, and protocols.  

We are giving it to other research labs with source code, documentation, and analysis tools. 

 

In pursuit of these aims, the Wadsworth group collaborates with groups in Tübingen (Birbaumer et al.), 

Graz (Pfurtscheller et al.), Atlanta (Moore and Kennedy), and Philadelphia (Heiman-Patterson).  The work 

is supported mainly by the National Center for Medical Rehabilitation Research at NIH, and also by the 

ALS Hope Foundation in Philadelphia and the Deutsche Forschungsgemeinschaft (DFG). 

 

Recent review article: Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM.  Brain-

computer interfaces for communication and control. Clinical Neurophysiology 113:767-791, 2002. 
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EEG PATTERN CLASSIFICATION USING SUBSPACE METHODS 

AND SIMPLE CLASSIFIERS 
 

Charles Anderson1,3, Michael Kirby2 
1 Department of Computer Science 

2 Department of Mathematics 
3 Program in Molecular, Cellular, and Integrative Neuroscience 

Colorado State University, Fort Collins, CO 80523 

 

The manner in which EEG signals are represented for analysis and classification greatly affects the 

results obtained. To-date, most BCI research has relied on frequency-based representations, such as the 

energy within particular bands of frequency. Another common representation is based on autoregressive 

models, for which the coefficients have been shown to be very useful in classifying EEG as to which 

mental task a subject is performing[1]. A third class of representations are subspace methods that produce 

linear transformations designed to optimize various aspects of the transformed signals. In this poster, we 

describe a recent comparative study of several subspace methods for EEG classification. 

One of the more common subspace methods is the Karhunen-Loève transform, also referred to as 

principal component analysis and singular value decomposition (SVD). The SVD transform maximizes 

the mean-square projection of the data on lower-dimensional subspaces, thus finding directions in the 

original data space along which the projected data has the highest variance. Less well-known transforms 

are maximum signal fraction analysis (SFA), that optimizes the amount of signal retained when signals 

are superposed, and canonical correlation analysis (CCA), that determines transformations of two data 

sets that produce the strongest correlation. 

We compare each of these transformations on data that has been augmented by the method of delays, 

whereby values from consecutive samples are concatenated into one sample. As illustrated by our results, 

the size of the delay greatly impacts the efficacy of the data representation. We do not use the transformed 

signals for classification. Instead, we calculate the transformation matrix for overlapping half-second 

windows of data and use a subset of the columns of the transformation matrices as our representation. 

Figure 1 shows classification accuracies of test data using the three subspace methods to represent 

the data and using either linear discriminant analysis (LDA) or a k-nearest-neighbor (kNN) classifier. As 

can be seen in the first column of Figure 1, the classification of the EEG data using the right singular 

vectors of the SVD depends significantly on the number of lags, or delays, used. No time lagging results 

in very poor classification rates for any number of modes; superior results are found empirically for lag 

two data. Five modes are required to obtain classification rates over 90%. Interestingly, lagging the data 

beyond two data points actually degrades classification performance. Fisher’s LDA appears to consistently 

out-perform the kNN method. This suggests that only a subset of employed parameters are actually 

performing the discrimination, an hypothesis that warrants further study. 

Classification results using CCA are shown in the second column of Figure 1. These results are similar 

to the SVD results, in that samples with zero lags do not contain enough information to discriminate the 

two tasks while adding one lag increases the classification accuracy significantly. The third column of 

Figure 1 shows the multi-mode discrimination capacity of SFA representation. Surprisingly, classification 

of the SFA modes with no lags works well. This is the only method examined that had this feature. It is 

also interesting to note that for zero to two lags there is no degradation in performance as more modes are 

included in the representation. Since it is the noise that is contained in the later modes, one may conclude 

that the correlated signal characterized by later modes is neither helpful nor problematic for the 

classification task. Performance of kNN does degrade with additional modes suggesting that this method 
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is more sensitive to noise. 
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Figure 1: Percent of test samples correctly classified by LDA and kNN classifiers for data with zero to 

four lags represented as SVD, CCA, and SFA transforms. Each row of graphs is for a different number of 

lags, starting with zero in the top row to four in the bottom row. The first column of graphs is for the SVD 

representation, the second column is for the CCA representation, and the third column is for the SFA 

representation. The horizontal axis in each graph is the number of modes used to perform the classification. 

THE BF++ FRAMEWORK  

(THE BIOFEEDBACK SOFTWARE DEVELOPMENT KIT) 
 

Luigi Bianchi1,4, Fabio Babiloni2, Marco Arrivas, Patrizio Bollero, Maria Grazia Marciani 1,3 

1 Dip. Neuroscienze, University of Rome  “Tor Vergata”, ITALY 
2 Dip. Fisiologia Umana e Farmacologia, University of Rome “La Sapienza”, ITALY 

3 IRCCS, Fondazione “S. Lucia”, Rome, ITALY 
4 Brainware, Rome, ITALY 

 

A problem that commonly arises while developing cognitive bio-feedback (CBF) systems for disabled 

people is that it is very difficult to reuse them in a wide range of pathological situations. Very often these 

systems are designed using a “bottom-up” approach that is that starting from the particular problem the 

whole system is developed. This kind of approach fails because optimal use of every subject residual 

capability could require modifying the whole system in a way that is incompatible with practical needs. 

Moreover, these systems are specific to a limited set of platforms so re-engineering them could be a huge 

task: what happens if one wants to port a Windows 95/98 CBF application that runs on a notebook to a 

smaller Pocket PC running Windows CE? 

 

The aim of BF++ is to give support to the creation of CBF systems by implementing a cross-platform 

C++ framework. As it is implemented using only ANSI C++ features it is possible to recompile it on 

virtually any platform. 

 

Such framework must:  

· minimize programming effort, by providing a skeleton of a CBF application and other facilities 

such as DSP and matrix computation routines; 

· be independent on the nature and number of the biological signals used; 

· allow the integration with existing devices such as screen readers, tactile mice, text to speech 

engines, etc;  

· allow the diffusion of the resources (data, algorithms, etc.); 

· maximize source and binary code reuse; 

· be efficient, to guarantee good performances in a wide range of situations; 

· allow the realization of low-cost systems; 

· be independent on the hosting platform (software and hardware). 

  

By grouping all the aspects that are common to all the CBF systems implementations it has been  

possible to use a “top-down” design approach which offers a much greater flexibility and that allows the 

creation of a framework that can dramatically speed up the realization of several systems. Four main 

different operating modalities were provided: Setup, Training, Testing and Run.  

 

A generic CBF system has been decomposed into 6 main functional blocks (plus the subject): 
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Acquisition, Kernel, Feedback Rule, Patient Feedback, Persistent Storage and Operator User Interface. 

Some of them are divided into sub-elements. For example the Kernel module is composed itself of more 

than 10 sub-objects. Assembling then it is possible to create a virtually infinite set of CBF systems that 

can be recompiled under any OS for which an ANSI C++ compiler is available. Special care was taken 

with respect to efficiency: in the PocketPC case this is obviously a key issue, while using Workstation it 

is possible to use many classifiers simultaneously in order to improve the overall system performance. 

This last feature was easily provided using well-known design patterns. 

All the timing issues are also encapsulated into objects and no particular effort is required: special 

functions are automatically invoked whenever a trial starts (the OnTrailStart functions family), whenever 

a computation in performed (the OnTrialCompute family), whenever a trial ends (the OnTrailEnd family) 

and eventually whenever a classification occurs. By simply overriding them it is possible to provide a 

feedback to the user. An internal score is also provided to automatically evaluate the overall system 

performances: in the Testing modality, for example, the system ask to the patient to perform a task (e.g. 

one of many mental tasks) through a randomization engine and then it tries to recognize it. As it knows 

which task was required and which one was the classified one, it is able to update an internal score 

automatically. This and many other functionalities are already implemented in the framework as they do 

not depend on the nature of the biological signals used. Also file I/O is supported using XML as file 

format. 

 

This approach was used to develop many different BCI systems for the Win32 platform. Some of 

them were already ported on a PocketPC device running Windows CE allowing the realization of wearable 

BCI systems. Also simulations using intracortical recordings were successfully done as well as using the 

Linux platform. Finally a simulation was also done on the SmartPhone 2002 platform: this suggests that 

it is also possible to realize PaceMaker like biofeedback and BCI systems using BF++. 
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Volker Kunzmann, Florian Losch, Gabriel Curio  

Neurophysics Group, Dept. of Neurology 

Klinikum Benjamin Franklin, Freie Universitäet, Berlin, Germany 

 

The Leitmotiv of our BCI approach is 'let the machines learn', i.e., we aim to minimize the need for 

subject training while the major learning load imposed on two coupled adapting systems (human subject 

and computer) is to be accomplished by the machine. Here, we demonstrate detailed results from two 

different ERP types: 1) Our subjects take a decision that is coupled to an overlearned motor output, i.e., 

selfpaced typing on a computer keyboard. The spatial patterns of the slow cortical potentials preceding 

such voluntary movements show a negativity (Bereitschaftspotenzial) focussed over the corresponding 

primary motor cortex. Learning machines which are trained on spatiotemporal features of multi-channel 

EEG can predict the laterality of upcoming movements before EMG onset with accuracies of up to 97% 

in untrained subjects. One reason for choosing slow potentials as BCI-signal was that we expected this 

approach to work robustly also at a fast command pace. To test this hypothesis we conducted selfpaced 

typing experiments at different tap rates with 0.5, 1 and 2 taps per second (tps). For 8/9 subject who all 

were untrained for BCI the fastest tap performance (2 tps) worked efficiently, with bit rates about twice 

as high as in the 0.5 tps experiment. The theoretical peak bit rate, which could be attained in principle 

when using an optimal coding strategy, was between 6 and 10 bits per minute (bpm) for 4 subjects and 

even above 15 bpm for another 5 subjects. 2) One additive ('second-pass') strategy to enhance BCI 

classification accuracy, in particular for subjects who are facing a substantial fraction of 'first-pass' BCI 

classification errors, is a verification (of the first-pass classification) based on the detection of a cerebral 

'error potential', as proposed by Schalk et al. In this context, we adopted the algorithmic strategy described 

above and introduced one small but psychologically crucial modification: because repeated false 

second-pass rejections of BCI trials, which had been correctly classified in the first-pass, would be 

detrimental, an important specification of our response verification algorithm is that the rate of false 

positive detections of first-pass errors should be strictly bounded. As our method detected 85% of errors 

in 7/8 subjects (working on a d2-test) at a predefined rate of false positives as low as 2%, this approach 

might provide a valuable add-on tool for improving BCI bit rates by an online EEG-based detection of 

first-pass classification errors. 
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SINGLE-TRIAL DENOISING OF EEG WITH A WAVELET DOMAIN HIDDEN MARKOV 

TREE 
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We have investigated the application of a wavelet domain hidden Markov tree (wHMT) for denoising 

electroencephalgraphy (EEG), the aim being to improve single trial detection of mental motor imagery.  

A wHMT is a directed graphical model that captures statistical dependencies between wavelet coefficients 

across scale.  In the wHMT, the probability density function of wavelet coefficients is approximated with 

a Gaussian mixture model.  Observations of the distributions of wavelet coefficients of EEG evoked 

potentials reveal that the coefficients have near zero mean and long tails--i.e. they are supergaussian.   

Such a distribution may be approximated using a two state, zero mean, Gaussian mixture model in which 

the large number of small coefficients are modeled with a low variance Gaussian, and the small number 

of large coefficients are modeled with a high variance Gaussian. 

 

The wavelet transform of evoked potentials, and indeed most types of natural signals, inherently 

exhibits the persistence of large or small coefficients across scale and the clustering of coefficients within 

scale.  To efficiently describe the statistics of wavelet coefficients, each coefficient is associated with a 

hidden state variable that describes whether the coefficient is in either a high or low variance state as 

described by the Gaussian mixture model.  In order to model the conditional relationships described by 

clustering and persistence properties of wavelet coefficients, hidden state variables are linked within and 

across scales.  A model that contains links between state variables within scales captures the clustering 

properties of the wavelet transform and is referred to as a hidden Markov chain.  Likewise, a model that 

contains links across scales captures the persistence properties of the wavelet transform and is referred to 

as a hidden Markov tree.  Since modeling the local dependencies within scale becomes computationally 

expensive we consider the simplified case of a wHMT in which all coefficients within scale are assumed 

to have the same probability density function; an approximation referred to as tying within scale. A 

modified Baum-Welch upward-downward expectation maximization algorithm is used to determine the 

parameters of the hidden Markov tree. 

 

Once the parameters of the wHMT have been determined, denoising is straightforward.  Assuming 

that additive noise increases the variance of all wavelet coefficients, denoising is accomplished by 

removing the variance due to noise from the variance of each noisy coefficient, conditioned on the hidden 

state.  An estimate of noise variance is derived from the variance of the finest scale wavelet coefficients.   

The denoised wavelet coefficients are estimated using a hidden state weighted Wiener filter.  The inverse 

wavelet transform is then used to reconstruct the signal.  The value of the wHMT over traditional wavelet 

denoising methods is that it captures the statistical dependencies between wavelet coefficients. 

 

To evaluate the utility of the wHMT for denoising EEG signals and improving single-trial detection 

of mental activity we denoised single-trial EEG signals collected for a synchronized mental motor imagery 

task.1  Data from 9 subjects was used in the evaluation.  Separate wHMT's were trained for each subject 

and for each sensor using data from a time window centered over a period during which the subject was 

instructed to imagine pressing a button with their left or right index finger.  Note that only one trial was 
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used to train each wHMT.  Subsequently, 90 left and 90 right trials were denoised for each subject.  

Logistic regression was used to classify trials as left or right imagined movement.  Leave-one-out 

performance showed a statistically significant increase in the ROC area (Az) and percent correct (PC) 

before and after denoising (before Az=0.64; after Az=0.66 p<0.005, before PC=62%; after PC=64% 

p<0.005).  We conclude that denoising using a wHMT is able to improve single trial classification 

performance of our linear classifier for this set of mental motor imagery data.  We are currently 

investigating the wHMT as a model for directly classifying single-trial EEG. 

 

  
1 Data were kindly provided by Allen Osman from the Psychology Department of the University of 

Pennsylvania. A description of the data can be found at 

http://newton.bme.columbia.edu/competition.htm 
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MODELS FOR BRAIN COMPUTER INTERFACES 
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Abstract 
We introduce a new method of training hidden Markov models (HMM) for use in a brain 

computer interface (BCI). Additional information is used in the train processes by generalising 

the HMM to a coupled hidden Markov Model (CHMM). The additional parts of the model 

are removed after training to leave the desired HMM. This method significantly improves the 

classification results. 

 

In this poster we outline a new method for training a brain computer interface (BCI) for the 

classification of movement planning. The interface makes use of a hidden Markov model (HMM) for 

classification of the Electroencephalogram (EEG) Data. A HMM is a statistical model which utilises 

temporal information both in learning its parameters and in classification. In a HMM the probability of an 

observation, Ot, in this case the EEG data, is dependent on some hidden state, St, and the hidden states are 

related to each other by a first order Markov process, i.e. P(St|St-1). 

 

The training algorithm outlined here uses the more general Coupled Hidden Markov Model (CHMM) 

[RGRed]. These are two, or more, HMMs which are coupled via their hidden states, as can be seen in 

figure 1. This allows us to model the interaction of the two data sources in a probablistic manner. 

 

HMM training has to be performed by an unsupervised method, which traditionally is performed by 

the Expectation Maximisation (EM) algorithm [PR98]. The drawback with the EM algorithm is the 

impossibility of ensuring that the algorithm picks up the relevant state transitions in the EEG data. A 

method that tackles this problem is Maximum a Posteriori (MAP) [RGRed], an extension to EM, which 

makes use of priors over the model parameters. These priors bias the learning algorithm towards a 

favoured area in the parameter space. In addition to priors we can introduce further information from data 

sources, which are related through their hidden states to the EEG (not necessarily a 1 to 1 mapping), to 

help with the learning process. In this case we use data recorded simultaneously from muscle movement. 
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Figure 1: A Directed Acyclic Graph (DAG) of a Coupled Hidden Markov Model with two chains and a 

unitary lag. Where At and Bt are the observation models over the feature spaces and Xt and Yt  

are the associated hidden states  

 

 

In terms of the graphical model one of these chains is the EEG data and the other is the 

electromyogram (EMG) data from the muscles of interest. These additional sources of information are 

removed from the model, by marginalisation, after training to leave a model which is based purely on 

EEG data for classification. This trained model performs significantly better than one trained in the 

traditional manner. 
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PRELIMINARY BRAIN COMPUTER INTERFACE DESIGN 

BASED ON MOVEMENT PLANNING 
 

M. Gibbs, S. Roberts  

Pattern Analysis and Machine Learning Group 

University of Oxford, Oxford, U.K. 

 

Abstract 
The design of a Brain Computer Interface (BCI) has to be carefully considered. Experimental 

factors which might influence thought processes must be taken into consideration. This poster 

outlines our BCI design based on detecting movement planning. Our novel BCI design uses a 

gaming paradigm as its central concept. 

 

Any BCI system designed to classify Electroencephalogram (EEG) data on-line must take into acount 

the effect of human brain plasticity, i.e. the ability to learn. One way to utilise this change in behaviour is 

to present the subject with information about how well the predictor in the system is performing. This is 

referred to as biofeedback. 

 

Designing the BCI data collection system around a game scenario presents us with an intuitive 

method of channeling feedback to the subject. This change in paradigm will allow the study of the effects 

of biofeedback in its different forms, in a realistic environment, in a manner consistent with the eventual 

environments in which the BCI system is likely to be utilised. 

 

This shift in paradigm gives several advantages over cued and selfpaced methodologies [GSN + 01]. 

It is intuitive to the user. Most people are now familiar with gaming enviroments and so require no 

additional training. The design of the game can make the system more engaging and help to focus the 

subject's mind on the task in hand. 

 

We present an overview of the experimental protocol and setup under development. The aim is to, 

wherever possible, reduce experimental factors that can affect the thought processes of the subject from 

whom movement planning data is being collected [BB98, RER + 99]. We also give details of  the 

prediction models under consideration [RGRed, GSN + 01].  
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FEASIBILITY OF INDEPENDENT COMPONENT ANALYSIS (ICA) FOR SEPARATION OF 

EMG ARTIFACTS FROM EEG FEATURES USED IN BCI OPERATION 
 

I.I. Goncharova, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw 

Wadsworth Center 

New York State Department of Health and State University of New York, Albany, NY 12201 

 

EMG contamination is a well-recognized problem in EEG studies, particularly those relying on 

automated measurements. The goal of this study was to test the possibility of online artifact correction in 

BCI studies using ICA. 

 

Spectral and topographical criteria for EMG identification were studied in 25 healthy adults 

intentionally producing EMG artifacts by weak (15±3% of maximal) contractions of the frontalis or 

temporalis muscles (raising eyebrows or jaw clenching). Identification and correction of unintentionally 

produced artifacts was performed on the data collected from two BCI users during 10 training sessions. 

ICA decomposition was performed using an information maximization neural network algorithm on 64 

scalp-recorded signals having 25-min duration. The resultant 64 Independent Components (IC) were 

identified by their time courses (IC activations) and topographical distributions (IC projections). Offline 

artifact correction was performed by removing a subset of ICs reflecting artifactual sources and 

reconstructing the record from the residual non-artifactual components. Simulation of the online artifact 

correction was performed by applying an ICA-derived spatial filter obtained from one experimental 

session to new data. 

 

Offline artifact correction based on ICA appeared to be highly effective for blinks and eye 

movements. Independent components reflecting muscle artifacts could be identified by their time courses 

and spectral and topographical distributions and removed from the data. However, a number of ICs from 

each data set were identified as a mixture of EEG and EMG activities. Online muscle artifact correction 

is possible by filtering out a set of ICs reflecting predominantly EMG sources. The ICA-derived spatial 

filter cannot be exported from one subject to another one due to individual differences in the sources 

generating artifacts. The results may aid development of new artifact detection procedures for BCI studies, 

particularly those focused on frontel EEG electrodes, which are most vulnerable to EMG contamination. 

 

Supported by the National Center for Medical Rehabilitation Research, NIH. 
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CLASSIFICATION OF MOVEMENT-RELATED ERD/ERS PATTERNS IN ECOG 
 

Graimann1, B., Huggins2, J., Levine2, S., Neuper1, C., Pfurtscheller1, G. 
1Dept. of Medical Informatics, Institute for Biomedical Engng. 

University of Technology Graz, Austria 
2Dept. of Physical Medicine and Rehabilitation, University of Michigan Medical Center, 

Ann Arbor, MI 

 

Event-related potentials (ERP) and event-related desynchronization (ERD) are responses of the brain 

to externally- or internally-paced events. It is important to note that ERP and ERD/ERS are different 

responses. The former can be read as a reactivity pattern of a stationary system to a stimulus, and the latter 

as a change in the ongoing ECoG resulting from alterations in the functional connectivity within a neural 

network (Pfurtscheller and Lopes da Silva, 1999). 

 

It has already been demonstrated that the detection of movement-related potentials (MRP) in single 

ECoG channels is possible with high accuracy (Levine et al., 2000). The goal of this work is to 

demonstrate that the detection of ERD/ERS patterns is also possible with very good accuracy. In fact, 

classification results of more than 90% hit percentages and less than 10% false positive percentages were 

found. 

 

Feature extraction was done by calculating adaptive autoregressive parameters (AAR). Linear 

discriminant analysis (LDA) together with a simple threshold detector was used as classifier. The training 

process of the classifier was extended by a genetic algorithm which divided the training data into action 

and resting periods. 

 

The classification results obtained by the proposed ERD/ERS detection method were compared with 

the results of the ERP detection method suggested in Levine et al. (2000). It is of special interest that 

depending on the location of the ECoG electrodes, good classification results have been obtained either 

with both reactivity patterns (MRP and ERD/ERS) or with only one of the reactivity patterns (MRP or 

ERD/ERS). 
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THE ROLE OF THE BEREITSCHAFT POTENTIAL AS AN INTERFACE FOR BRAIN-

COMPUTER ACTIVATED PROTHESIS IN SPINAL CORD INJURY 
 

Joseph B. Green, Leonid I. Rozhkov, Darren Strother, Nancy Garrott 
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To characterize the relative contributions to voluntary movements of a network which includes the 

Supplementary Motor Area (SMA), Primary Motor Area (M1), Primary and Secondary Sensory Areas, 

and Premotor Areas. We have compared the SMA activation with the Bereitschaft Potential (BP) and 

discovered interesting temporal and anatomic similarities between the two. The ultimate goal is to relate 

the BP (or the SMA) to external devices. This entails tapping the BP at various points with conversion of 

potentials to a "language" understood by the receiving devices. Prior to this it is necessary to have greater 

insight into the relationships between the BP and the SMA. Once accomplished, it may then be possible 

to convert activations of either or both to use neuroprosthetic devices (see Wessberg et al, 2000). 
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HOW MANY PEOPLE ARE ABLE TO OPERATE AN EEG-BASED BRAIN-COMPUTER 

INTERFACE (BCI)? 
 

C. Guger1, G. Edlinger1, G. Pfurtscheller2 
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2 Department of Medical Informatics, University of Technology Graz, Inffeldgasse 16a, 8010 Graz, 

Austria 

 

At this time, about 22 labs are working on communication channels between the brain and the 

computer (IEEE 2000). Published papers present results with a subject population of about 1-13. The data 

were used to develop systems with high information transfer rates. But subjects vary greatly in their ability 

to control a brain-computer interface (BCI). Some subjects were excluded from further investigations due 

to lack of BCI control in early training. Since the aim of a BCI is to help patients who suffer from severe 

motor impairments, development must focus on a broad population and not only on selected subjects. It 

is therefore of interest how many people are able to operate an EEG-based brain-computer interface after 

only 20-30 minutes of training with a minimum of 2 bipolar EEG derivations.  

In a field study performed with visitors of an exposition 99 persons (all healthy) participated in a 

brain-computer interface experiment in Graz. The subjects spent 20-30 minutes for the BCI investigations. 

The experimental procedure was divided into two runs. The first run consisted of 40 trials without 

feedback. Then a subject-specific classifier was set up to give feedback to the subject. During the second 

run the subject had the task to control a horizontal bar on the computer screen (again  40 trials). All 

subjects were instructed to imagine a right hand movement and a foot movement after the cue stimulus 

depending on the direction of an arrow. Bipolar electrodes were mounted over the right hand 

representation area and over the foot representation area. Classification results achieved with (i) an 

adaptive autoregressive (AAR) model (39 subjects) and (ii) the bandpower estimation (60 subjects) are 

presented.  In both cases linear discriminant analysis (LDA) is used for the classification of the 

parameters.  

The experiments were carried out using a newly developed BCI system running in real-time under 

Windows with a 2 channel g.tec EEG amplifier. The installation of this system, based on a g.tec rapid 

prototyping environment, includes a software package that supports the real-time implementation and 

testing of different EEG parameter estimation and classification algorithms (Guger 2001). The tight 

coupling between the on-line experiments and off-line analysis of the acquired data is one of the major 

advantages of the new g.tec BCI system. 

  
Classification 

Accuracy in % 

 
RLS  

Percentage of Runs 

(N=76) 

 
BP  

Percentage of Runs 

(N=117) 

 
RLS+BP  

Percentage of Runs 

(N=193)  
90-100 

 
6.6 

 
6.0 

 
6.2  

80-89 
 

10.5 
 

14.5 
 

13.0  
70-79 

 
30.3 

 
33.3 

 
32.1  

60-69 
 

40.8 
 

42.7 
 

42.0  
50-59 

 
11.8 

 
3.4 

 
6.7  

 
 

100 
 

100 
 

100 

 

Table 1: Percentage of runs which were classified with a certain accuracy for recursive least squares 
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(RLS) algorithm and bandpower (BP) estimation. N specifies the number of runs. RLS+BP shows the 

results for both algorithms. 

It is of interest that in about 20 % of the runs (about 20 % of subjects) the 2 brain states were 

distinguishable with an accuracy of greater 80 % after only 20-30 minutes of training as shown in Table 

1. Further 70 % of the runs were classified with an accuracy of 60-80 % and only in 6.7 % a marginal 

discrimination between brain states was possible. This results show that a BCI operation can be performed 

by a large population and that even a high accuracy of above 90 % can be achieved. We know from further 

investigations that even subjects which have no BCI control in the first few runs can learn the operation 

by biofeedback training. 
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THE THOUGHT TRANSLATION DEVICE (TTD) AS A MULTI-FUNCTIONAL BCI: 

COGNITION DETECTION, EEG-FEEDBACK IN FUNCTIONAL MRI AND 

COMMUNICATION 
Thilo Hinterberger, Jürgen Mellinger, Barbara Wilhelm, Niels Birbaumer 

Institute for Medical Psychology and Behavioral Neurobiology 

University of Tübingen, Germany 

The goal to achieve Brain-Computer-Communication (BCC) in severely paralyzed patients is not 

solely devoted to the question of how to design classification algorithms, feedback paradigms or spelling 

procedures. Two other important questions are focused in the current version of the Thought Translation 

Device (TTD) as a BCI for clinical and research purpose which utilizes physiological control of slow 

cortical potentials (SCP) to provide BCC: 

1) Before successfully teaching a patient totally unable to communicate by muscular activity (locked-

in syndrome) to self control his or her own brain signals, a knowledge about the state of consciousness 

and cognitive abilities needs to be obtained. For this purpose, a diagnostic Cognition Detection System 

(CDS) has been developed as a further extension of the TTD. The CDS consists of a freely expandable set 

of event related EEG experiments such as the well known oddball paradigm with “oddity” appearing on 

various levels of the brain’s information processing. The CDS investigates the ability of a patient to 

discriminate between, e.g., words, pseudo-words and her own name; between syntactically and 

semantically well-formed sentences on the one hand and sentences well-formed syntactically but ill-

formed semantically on the other; or between “matching” and “non-matching” enumerations of ordinal 

numbers. This is done by recording auditory or visually evoked potentials and then carrying out a 

discriminant analysis of EEG patterns. Therefore, features for statistical analysis such as discriminant 

analysis and significance tests have been included in the TTD. A set of seven experiments with an event-

related design and auditory stimuli have been developed to examine patients in a vegetative state or with 

locked-in syndrome for their cognitive abilities. From a technical point of view, implementing a stimulus-

response paradigm within the framework of a multi-tasking oriented computer operating system 

introduces a latency problem, i.e. the problem of not being able to precisely determine the point in time 

where stimulus presentation will actually take place. Despite the TTD running on MS-Windows®, 

stimulus presentation latency is small compared to the accuracy required for analyzing evoked potentials. 

The TTD-CDS-system provides a powerful combination of diagnostic and brain-computer-

communication applications in a single system. The first results are presented from one patient in a 

vegetative state who can be regarded as cognitively intact by analyzing the data of six event related 

experiments, which were carried out with the CDS-system. For a comparison, the data of the experiments 

from one healthy person are shown. 

2) As not all human subjects learn to obtain SCP self control, functional MRI can be used as a method 

to investigate the mechanisms underlying SCP self control in the brain because it provides high spatial 

resolution. Therefore the TTD was modified with respect to the amplifier, the synchronization with the 

MRI scanner and the feedback paradigm to be applicable in an MRI environment. Several subjects, trained 

successfully and non-successfully outside the MRI, will be investigated with this combined EEG-

feedback/fMRI method. Before the simultaneous EEG/fMRI recording is carried out subjects are trained 

to achieve self-control over SCPs in terms of evoking a positive or negative potential shift at the vertex 

on command. First results from one well trained subject show activation in the blood oxygen level during 

the task to produce cortical negativity primarily at the vertex (bilateral), the precuneus and the inferior 

temporal regions. During the positivity task, at the vertex (bilateral, mainly gyrus postcentralis), the 

precuneus, and additionally at the right temporal pole and inferior parietal left an activation occurred. 

Deactivation was only found during positivity and involved widespread visual areas, the medial orbital 
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frontal cortex and the superior parietal cortex. Comparisons between learners and non-learners help 

clarifying the basic mechanisms in physiological control of the EEG. 

FEEDBACK TO IMPROVE DETECTION OF EVENT-RELATED POTENTIALS IN 

ELECTROCORTICOGRAM 
 

J.E. Huggins, M.M. Rohde, S.P. Levine, R.K. Kushwaha, 

S.L. BeMent, E.A. Passaro, K.J. Leneway 

The University of Michigan, Ann Arbor, MI, USA 

 

Introduction 
Subjects given appropriate feedback have learned to modify the mu rhythm (Wolpaw, et al., 1991) or 

increase event-related desynchronization (ERD) and event-related synchronization (ERS) (Pfurtscheller, 

et al., 1998) in their electroencephalogram (EEG) for the purpose of operating a direct brain interface 

(DBI).   Feedback for the improvement of DBI operation in electrocorticogram (ECoG) has not 

previously been demonstrated, however.  

 

The University of Michigan DBI is based on the detection of event-related potentials (ERPs) in human 

ECoG.  Research subjects are patients in epilepsy surgery programs who have subdural electrodes 

implanted for clinical purposes unrelated to the research objectives. Previously reported off-line detection 

experiments (Levine, et al., 2000) have relied on off-line processing.  As a consequence, no feedback has 

been provided and movement-related ERPs (instead of preferred motor imagery ERPs) have been required 

for determination of movement onset and detection accuracy. .   

 

Methods   
The UM-DBI first generation ERP acquisition, analysis and training system allowed selection of a 

feedback template and then provided the subject with feedback on the quality of subsequent ERPs (Rohde, 

et al., 1999).  The feedback experiment session involved a template collection block of 50 repetitions of 

an action and 6 feedback blocks each containing 25 repetitions of the same action. Sessions lasted no more 

than 2 hours.  Feedback was based on a comparison between the incremental change in the signal-to-

noise ratio (SNR) of the ERP template caused by the addition of the current ERP (Rohde, et al., 2002) and 

the average change in the SNR of the ERP template during the previous template collection or feedback 

block.  The feedback was in the form of a deflection of a vertical green bar on a computer screen 

approximately 2.2 seconds after movement onset (Rohde, 2000).  The subject was instructed to try to get 

the bar to go all the way to the top of the computer screen.  The maximum possible height of the feedback 

bar was the average change in the SNR from the previous block scaled by 0.2 to 2. 

 

Results 
Data is reported from six subjects who participated in 11feedback experiment sessions.  ERP 

templates with SNR's above 3.0 were found for all subjects.  Dramatic improvements in the template 

SNR between the baseline template collection block and subsequent feedback blocks were found for 3 

subjects.  For these subjects the SNRs improved from 3.5 to a maximum of 7.8, from 4.8 to a maximum 

of 10.5 and from 5.1 to a maximum of 8.0 over the six feedback blocks.  Of the three subjects who were 

able to improve the SNR of their ERPs, only one had a corresponding improvement in the accuracy with 

which the ERP could be detected using cross-correlation based template matching.   This subject was 

able to improve the detection from 79% hits and 22% false positives in the template collection session to 

100% hits and 0% false positives in the 6th feedback session.  In two subsequent sessions with this subject, 
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template SNR improved in the first feedback blocks, but then rapidly decreased.  

 

 

Discussion 
These results indicate that improvements in the SNR of ERPs related to actual movement and in the 

resultant detection accuracy are possible over a relatively short period of time given only simple feedback, 

however, performance variability needs to be further explored.  The next generation system, which is 

under development, will provide online feedback based on the cross-correlation value used for detection, 

rather than an indirect measure of “quality.” Also, feedback will be provided continuously (instead of only 

at the time of the actions) to promote the reduction of false positives as part of improved detection 

accuracy.  Online feedback will also permit experiments using imagined movements. 
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UCLA NEUROENGINEERING PROGRAM 
 

Jack Judy 

Department of NeuroEngineering 

UCLA  

Los Angeles, CA 

 

 

The goal of the UCLA NeuroEngineering Training Program is to prepare graduate students to be 

leaders in the revolutionary technology developments that will affect neuroscience in the 21st Century. 

Unfortunately, graduate programs in the life sciences prepare trainees to be academic scientists within 

traditional disciplines, almost always using the standard tools of that discipline. By expanding the 

synergies between the UCLA Brain Research Institute (BRI) and the Henry Samueli School of 

Engineering and Applied Science (HSSEAS), the UCLA NET Program will promote the application of 

new engineering technologies to neuroscience, including micromachining, microelectromechanical 

systems (MEMS), nanotechnology, and tissue engineering. The UCLA NET Program has the following 

objectives: (1) to enable students with a background in biological science to develop and execute projects 

that make use of state-of-the-art technology; (2) to enable students with a background in engineering to 

develop and execute projects that address problems that have a neuroscientific base; and (3) to enable all 

trainees to develop the capacity for the multidisciplinary teamwork that will be necessary for new 

scientific insights and dramatic technological progress. Many of the details and highlights of the program 

will be presented and descriptions of several NE projects will be described. 



 

 

99 

EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION (TMS) ON SLOW CORTICAL 

POTENTIALS OF THE BRAIN 
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29, 72072 Tübingen, Germany 
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3 Institute of Biophysics, University of Trento, Italy 

 

Several studies show that humans can acquire control over EEG parameters like slow cortical 

potentials (SCP) by means of neurofeedback (Birbaumer, 1984; Kübler et al., 2001). 

 

These results were used to develop a brain-computer interface (the Thought Translation Device, 

Birbaumer et al., 1999), which enables patients with locked-in syndrome to communicate via computer 

by self-regulating their SCP. 

 

Unfortunately several patients as well as healthy subjects were not able to control SCP even after 

extended training. Is there a possibility to support those non-learners in learning to control their SCP? 

 

The main goal of our study is to explore whether it is possible to shift the SCP by means of transcranial 

magnetic stimulation (TMS) and hence to develop further methods in order to facilitate the learning 

process. Results from current studies will be presented.  
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The “Graz Brain-Computer-Interface (BCI)” transforms changes in oscillatory EEG activity into 

control signals for external devices or feedback. These changes are induced by various motor imageries 

performed by the user. For this study two different imageries (movement imagination of the right vs. left 

hand or right hand vs. both feet) were classified  by processing two bipolar EEG-channels (positions C3 

and C4). Within a few training sessions, four young paraplegic patients learned to control the BCI. The 

goal was to find values for the trial length enabling a maximum information transfer rate. 

 

In accordance to the participant’s performance, the decision speed (i.e. trial length) was varied 

(shortened) step-by-step during training. The information transfer rate was calculated for each run with 

respect to the number of classes, number of hits and failings and the error probabilities. After one offline- 

classification run at the beginning of each session, all others were feedback-runs employing a simple 

computer game-like paradigm: The patient saw a black screen divided into two halfs by a dotted line with 

a red and a green “basket” at the bottom. After a pause with a fixed length of 1 second a little red ball 

appeared at the top of the screen and started to fall downward with constant speed. The subjects task was 

to hit the red basket (which changed sides randomly from trial to trial) as often as possible. Each run 

consisted of 40 trials always assuring 20 right- and 20 left- sided goals in a random order. The horizontal 

position was controlled by the BCI-output signal and the falling speed (i.e. trial length) was varied by the 

investigator across experimental runs. For both EEG channels two features were extracted taking the 

natural logarithm of band-power values for the 10-12 Hz alpha band and the 16-24 Hz beta band. Band-

power estimation employed a 5th-order Butterworth-filter and simple squaring. The feature values were 

calculated by averaging across a 1-second time window which was shifted sample-by-sample along data. 

Classification of data was performed by linear discriminant analysis (LDA). The BCI- output signal was 

weighted by offline-calculated gain factors to lead the mean deflection for each direction to the middle of 

the basket. 

 

Three out of four participants had good results after a few runs. The analysis of their last two 

experimental sessions, consisting of 10 – 16 runs each, showed that the trial length can be reduced to 

values around 2 seconds to obtain the highest possible information transfer rate. Attainable transfer rates 

were between 5 and 17 bit/min depending on the participant’s performance and condition. It has to be 

noted that these results were obtained with an average of only 20-30 training runs for each participant. 

Further improvement could be expected for a prolonged training. Of course, the used ‘basket-paradigm’ 

represents a task with low level of cognitive effort. The more complex the decision task is, the more time 

might be necessary for the BCI-decision.  
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IN DEPRESSED PATIENTS DIAGNOSED WITH AMYOTROPHIC LATERAL SCLEROSIS? 
 

Andrea Kübler 
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Trinity College, Dublin, Ireland 

 

A group of 76 patients diagnosed with amyotrophic lateral sclerosis were interviewed to assess 

depressive symptoms and quality of life. In contrast to many reports in the literature (e.g., Rabkin et al., 

2000) a remarkable portion of the patients showed mild to moderate (58%) or clinically relevant (43%) 

depressive symptoms. Depression was assessed with the ALS-Depressions-Fragebogen (ALS-depression-

questionnaire, Kübler et al., submitted), a questionnaire developed to assess depression in ALS patients 

taking into account the specific situation of increasing physical impairment culminating in total motor 

paralysis. Correlation between the severity of depression and physical impairment was moderately 

positive indicating that variables other than the stage of the disease play a role in how patients cope with 

an intractable illness. No differences in depression and quality of life was found between patients on 

artificial ventilation and other ALS patients. A strong negative correlation between depression and quality 

of life was found. Losing the ability to communicate was a major worry in many patients. By providing 

patients with a brain-computer interface, quality of life may be maintained or improved when 

communication is already restricted or impossible. Although a correlation between decreased quality of 

life and depression does not imply a causal relationship it may well be speculated that by improving quality 

of life, depressive symptoms may be reduced. Thus, a brain-computer interface may become a tool in 

psychological treatment of depression in ALS patients. 

 

Rabkin, J. G., Wagner, G. J., & Bene, M. D. (2000). Resilence and distress among amyotrophic lateral 

sclerosis patients and caregivers. Psychosomatic Medicine, 62, 271-279. 

Kübler, A, Kaiser, J & Winter, S (submitted). ADF-12: Ein 12 Item Fragebogen zur Messung von 

Depressivität bei Patienten mit amyotropher Lateralsklerose (A 12 items questionnaire to assess 

depression in patients diagnosed with amyotrophic lateral sclerosis). Diagnostica. 
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GRAZ BCI: FIRST RESULTS OF DIFFERENT TYPES OF 

VIRTUAL KEYBOARDS 
 

G. Müller, B. Obermaier, C. Neuper, G. Pfurtscheller 

Dept. of Medical Informatics, Institute for Biomedical Engineering 

University of Technology Graz, Austria 

 

It is possible that completely paralyzed patients get the possibility to communicate with their 

environment by the use of a ‘Virtual Keyboard’ (VK). A ‘Virtual Keyboard’ is a letter spelling device 

operated by the Graz-BCI, based on the spontaneous EEG. The EEG is modulated by imaginations of 

hand or foot movements. Two types of VKs are presented, which have been tested in 3 able-bodied 

subjects. 

 

To select a certain letter, using the standard VK, 5 steps of selection and two further levels of 

confirmation (‘ok’) and correction (‘back/del’) are provided. In a dichotomous structure with 5 levels 32 

characters can be selected. Six steps are necessary to select a single letter. With this type of a VK and the 

standard BCI timing [Pfurtscheller 2000] a spelling rate  of 1.25 letters per minute can be achieved (classification 

accuracy of 100 % assumed). The VK can be operated in two modes: a ‘free spelling’ mode and a ‘copy spelling’ mode for training. There is 

also a switch for ‘error-ignoring’ training. 

 

A study on 3 able-bodied subjects was performed. The results (Table 1) show the number of written letters, performed trials and 

resulting  [Obermaier 2002]. 

 
Table 1: Results of 3 subjects writing with the Virtual keyboard 

 
Subject  

 
Letters 

 
Trials 

 
   

i6 
 

44 
 

388 
 

0.85  
k3 

 
46 

 
340 

 
1.02  

m6 
 

44 
 

494 
 

0.67 

 

 

The newly developed VK is based on T9 technology of a cell phone including a dictionary. There are 8 keys, whereby each contains 

4 letters (first one: ‘A’,’B’,’C’,’D’, last but one: ‘Y’,’Z’ and the last one: only a ‘.’). Each key is represented by a number, thus each word in a 

wordlist is coded, e.g. the word KAUFEN (buy) would be represented by 316224. In the wordlist 145 words, commonly used for a basic 

communication, are saved. Using the VK-T8 4 steps are necessary to select a letter. 

 

In order to find the theoretical average spelling rate, which can be achieved by the BCI-VK8, 40 randomly selected words were 

simulated, assuming 100% correct decisions. The theoretical average spelling rate for the BCI-VK8 is 2.73 characters/min +/- 0.94, based 

on a trial length of 7.5 seconds. 

 

In a first study 3 subjects wrote with the VK-T8. Two of them (S1, S2) were trained using the standard VK before. S3 never did so. 

Results are shown in Table 2. 
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Table 2: Required number of decisions and corresponding spelling rate  in characters per minute. Trial length was 7.5 seconds. Values for the standard VK are given 

for comparison. The best (theoretical) values for 100% correct decisions are given as well as the results achieved by subjects S1, S2, and S3, respectively. 

 

 

 

 

old 

VK 

dec 

 

best dec/ 

 

S1dec/ 

 

S2dec/ 

 
S3 

dec/ 
 

BRAUCHEN (to need) 

 
48 

 

16/4.00 

 

16/4.00 

 

31/2.06 

 

49/1.31  

 

    SCHMERZEN (pain) 

 
54 

 

17/4.24 

 

22/3.27 

 

17/4.24 

 

29/2.48  

 

    BITTE (please) 

 

30 

 

14/2.86 

 

14/2.86 

 

14/2.86 

 

14/2.86  

 

    HUNGRIG (hungry) 

 

42 

 

16/3.50 

 

21/2.67 

 

16/3.50 

 

30/1.87  

 

    HELFEN (to help) 

 

36 

 

16/3.00 

 

16/3.00 

 

45/1.06 

 

19/2.53 

 

Fewer decisions had to be made with the help of a wordlist behind the VK-T8. The spelling rate varied 

from 1.06 to 4.24 letters/min. It should be taken into account that the spelling rates from the VK-T8 depend 

on the wordlist. The present results are based on a list with 145 entries. 

 

A problem using the VK, controlled by BCI, is the contiguity of decisions per letter and the 

classification accuracy reached by the BCI. Some examples are given in Table 3. 

 
Table 3: Probability for correct letter selection with different classification accuracies.  

 
 

accuracy 
 
 

 
dec./letter 

 
0.80 

 
0.90 

 
0.95 

 
0.99 

 
 

 
6 

 
0.26 

 
0.53 

 
0.74 

 
0.94 

 
standard VK 

 
5 

 
0.33 

 
0.59 

 
0.77 

 
0.95 

 
 

 
4 

 
0.41 

 
0.66 

 
0.81 

 
0.96 

 
VK-T8 

 
3 

 
0.51 

 
0.73 

 
0.86 

 
0.97 

 
 

 
 

 
Probability for a correct letter 

 
 

 

Using the standard VK (6 decisions/letter) with an accuracy of 90 % the probability to type a correct 

character is 53%, whereas using the VK-T8 it is 66%. The probability increases by decreasing the 

number of decisions per letter or by increasing the BCI’s accuracy. Thus, further investigations on 

developing intelligent Virtual Keyboards and improving the classification accuracy of the BCI system to 

reach optimal performance have to be done. 

 

References: 

 

[Pfurtscheller 2000] Pfurtscheller G, Neuper C, Guger C, Harkam W, Ramoser H, Schlogl A, Obermaier 

B, Pregenzer M.: Current trends in Graz Brain-Computer Interface (BCI) research. IEEE Trans Rehabil 

Eng. 2000 Jun;8(2):216-9. 
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[Obermaier 2002] Obermaier B, Müller GR, Pfurtscheller G: ‘Virtual Keyboard’ controlled by 

spontaneous EEG activity. IEEE Trans Rehabil Eng., in review, 2002. 
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DOES THE SELF-REGULATION OF SLOW CORTICAL POTENTIALS AUTOMATE? 
 

Nicola Neumann, Thilo Hinterberger, Jochen Kaiser, Ulrike Leins, 

Niels Birbaumer, Andrea Kübler 

Institute of Medical Psychology and Behavioral Neurobiology 

University of Tuebingen, Germany 

 

The Thought Translation Device is based on the self-regulation of slow cortical potentials (SCP), i.e. 

changes in cortical polarization that last from 300 ms to several seconds. Patients are required to produce 

voluntary SCP shifts of either positive or negative amplitude, thereby moving a cursor on a notebook 

screen to select letters, words or symbols from a computer menu. For communication, it is very important 

that patients obtain a high percentage of correct potential shifts, because errors decelerate communication 

exponentially. Until now, it has been unclear if SCP self-regulation represents a skill that can automate. It 

was demonstrated, however, that SCP self-regulation improves over time and remains stable even without 

feedback training. In this study, we investigated whether SCP self-regulation automates with training and 

could thus be considered as a skill. In accordance with the neurophysiological literature it was 

hypothesized that at the beginning of SCP-training widespread cortical areas are activated. If SCP self-

regulation automates with increasing practice, cortical activation was expected to become more focal 

under the feedback electrode at Cz (neurophysiological indicator of automaticity). At the same time 

performance was assumed to become more stable (less variability across training sessions) and less 

erroneous (increasing percentage of correct responses) (behavioral indicators of automaticity). The 

participant was a male patient first diagnosed with amyotrophic lateral sclerosis at the age of 38. EEG was 

recorded from Fz, Cz and Pz referenced to both mastoids. Data are reported from a total of 179 runs (a 

run comprising 70 single trials) at the beginning of feedback training. Successful cursor control was 

revealed in the voltage difference between positive and negative SCP shifts measured in μV. The 

magnitude of the voltage difference was considered as an indicator for the learning of SCP self-regulation. 

Our hypothesis implied that with increasing automaticity the voltage difference would increase at Cz and 

decrease at both Fz and Pz. At the same time, the performance measured as percent correct responses 

should improve, and the variability measured as standard deviation in 10 consecutive runs should 

decrease. Results indicated that the voltage difference increased at Cz as a function of runs. Thus the 

patient learned to move the cursor up and down according to the task requirements. The voltage difference 

at Fz and Pz, decreased, i.e. with increasing practice the patient’s cortical activity became topographically 

more focal underneath the recording electrode. This is confirmed by the fact that the correlation between 

cortical activation at Fz and Cz was negative and no correlation was found between the activation at Cz 

and Pz. At the same time, the percentage of correct responses correlated with the increase of the voltage 

difference at Cz and with the decrease at Fz. The patient’s performance became more and more stable 

with increasing practice. For him the criteria for automaticity were met. He learnt SCP self-regulation 

very well and reached 100% correct responses. SCP self-regulation may not be performed without any 

attentional resources, because it must comply with the trial rhythm. However, as demonstrated in this 

study, SCP self-regulation automates with increasing practice and requires less attentional resources that 

can be employed for aspects of communication. 
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TRAINING PATIENTS: A CHALLENGE FOR THE USE OF BRAIN-COMPUTER 

INTERFACES 
 

Nicola Neumann & Andrea Kübler   

Institute of Medical Psychology and Behavioral Neurobiology 

University of Tübingen, Germany 

 

Brain-computer interfaces are highly developed technical systems. However, the feasibility of BCIs 

for the target group, for example, severely disabled or brain damaged patients, have to be considered. 

Training patients who are diagnosed with intractable neurological diseases to self-regulate their brain 

potentials poses several difficulties. The following questions will be discussed: 

 

1) Which patients should be selected if there is a choice? Are there any predictors for good 

performance? 

 

2) How to communicate with locked-in patients? How do they perceive their environment? 

 

3) How to take the patient's social environment into account? Who wants that the patient can 

communicate? Who is going to conduct the training? 

 

4) How to motivate patients for weeks and months of training during which patients have to 

maintain their effort? 

 

5) Are patients with intractable neurological diseases always depressive? 

 

6) In case of a failure: When to stop training? 

 

7) What about burn-out of research associates? 
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FUNCTIONAL AND BEHAVIORAL ROLES OF NEURAL PROCESSES UNDERLYING BCI 
 

Julie Ann Onton, Arnaud Delorme, Scott Makeig 

Swartz Center for Computational Neuroscience 

Institute for Neural Computation  

University of California San Diego 0961 

 

We  are working on dissect the neural dynamcis of EEG feedback. This follows our  previous work 

of using ICA to identify and localize alpha and mu rhythms that we presented at the previous BCI meeting 

(Makeig, Enghoff, Jung, and Sejnowski, 2000, IEEE transactions on  Rehabilitation Engineering, 8(2)), 

and our previous work on alertness monitoring (Makeig and Inlow, 1993; Jung et al, 1997). We also 

developed new techniques to visualize event-related brain dynamics (Delorme, Makeig and Sejnowski, in 

press,  available on line at www.cnl.salk.edu/~arno/mypapers/DelormeCNS2001.PDF ). As a first step, 

we used these techniques to identify brain areas that elicit  specific oscillatory processes of interest for 

brain-computer interface work (e.g., specific classes of alpha or mu  rhythms). The goal of our study is 

to understand the interactions and functional roles of the underlying neural processes. 
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EARLY FINGER MOVEMENT PREDICTION FROM A 

GENETIC SEARCH OF EEG SPECTRA 
 

David A. Peterson1,2,3,4, Charles W. Anderson1,2, Michael H. Thaut2,4 
1 Department of Computer Science 

2 Program in Molecular, Cellular, and Integrative Neuroscience 
3 Department of Psychology 

4 Center for Biomedical Research in Music 

Colorado State University 

Fort Collins, CO 80523 

 

We used EEG spectra to predict laterality of finger movement in a self-paced key typing experiment 

(Blankertz et al 2002). Our goal was to determine how well key types could be predicted from temporal 

windows well before the keystroke. We hypothesized that a custom spectral representation consisting of 

a composition of multi-resolution frequency bands would provide better classification than the standard 

EEG frequency bands. 

 

We used the EEG recorded from each of 6 bilateral frontal, central, and centroparietal electrodes. We 

used a support vector machine (SVM) with a Gaussian kernel for classifying a test set of 10% of 413 trials. 

We searched the high-dimensional feature space using a genetic algorithm (GA) as a wrapper around the 

SVM classifier. 

 

Both standard and custom features could be classified at a greater than chance level. The custom 

spectral features performed significantly better than the standard EEG spectra. The genetic search of 

feature spaces illuminates unconventional frequency band compositions that provide better classification 

accuracy. 

 

The results suggest that EEG frequency information can be used for distinguishing between different 

motor intentions well before the actual movement. The results also suggest that compositions of 

multiresolution EEG spectra may be more informative than standard EEG frequency bands. Given the 

complex, noisy, and relatively unknown relationship between EEG and mental processes like motor 

intentions, global stochastic search methods like GAs may be a preferred method of selecting features 

from a high-dimensional EEG feature space. 

 

References: 
Benjamin Blankertz and Gabriel Curio and Klaus-Robert Muller, “Classifying Single Trial EEG: Towards 

Brain Computer Interfacing”, Advances in Neural Information Processing Systems, Vol. 14, ed. by T. G. 

Diettrich and S. Becker and Z. Ghahramani, MIT Press, 2002. 
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BCI DATA ANALYSIS COMPETITION: RESULTS, LESSONS LEARNED AND THE 

FUTURE 
 

Paul Sajda1, Lucas Parra2, Klaus-Robert Müller3 
1 Department of Biomedical Engineering, Columbia University 
2 Adaptive Image and  Signal Processing, Sarnoff Corporation 

3 Intelligent Data Analysis Group Fraunhofer FIRST 

   

In an effort to foster development of machine learning techniques and evaluate different algorithms 

for BCI systems, we  announced a data analysis competition during the NIPS*2001 Brain Computer 

Interface Workshop (December 2001). Three EEG data sets involving separate BCI tasks were provided.  

Participants were  asked to follow a few simple rules: 

 

1. All data sets should be evaluated single-trial--do not average across multiple trials.  

2. Report the statistics/metrics outlined in the description of each dataset.  

3. Use of these datasets implies that the participant agrees to cite the origin of the data in any publication 

(see each dataset description for bibTeX entry). 

4. Please do not cheat! In some cases we have given labels for both training and test data, or because of 

limited data size a leave-one-out validation is required. You are on your honor to do the evaluation 

properly and unbiased (minimum bias at least).  

   

The three datasets in the competition included:  

 

EEG self-paced key typing (courtesy of Benjamin Blankertz and Klaus-Robert Mueller, Fraunhofer 

FIRST, and Gabriel Curio, FU-Berlin). This dastset consists of 513 trials of 27 electrode EEG recordings 

from a single subject.  While sitting in a normal chair, relaxed arms resting on the table, fingers in the 

standard typing position at the computer keyboard (index fingers at 'f','j' and little fingers at 'a',';') the 

subject was instructed to press the aforementioned keys with the corresponding fingers in a self-chosen 

order and timing.  The task was to classify EEG potentials as being associated with left or right finger 

movement.  

 

EEG synchronized imagined movement task (courtesy of Allen Osman, University of Pennsylvania). 

The task of each of 9 subjects during the EEG Synchronized Imagined Movement data set was to imagine 

moving his or her left or right index finger in response to a highly predictable timed visual cue.  The goal 

of competition participants was to classify EEG recordings as belonging to left or right imagined 

movement.  EEG was collected using 59 sensors and there were  90 trials for each subject (45 left and 

45 right)  

 

Wadsworth BCI Dataset (courtesy of Gerwin Schalk, Wadsworth Center) The data set consists of 64 

electrode EEG recordings from 3 subjects.  The task of each subject was to move a cursor on a video 

screen to 1 of 4 predetermined positions. Each target position differed only in vertical location. Horizontal 

coordinates were identical for each target position.  The objective of this contest was to classify EEG 

recordings as belonging to the correct target position.  

 

We will describe the datasets  in further detail, present results from the competition and discuss 

lessons learned.  We will also have an open discussion on the general utility of such competitions for 
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promoting algorithm development in BCI  and identify opportunities for a future competitions. More 

details can be found at http://newton.bme.columbia.edu/competition.htm. 

 

BCI2000 IMPLEMENTATION OF A FOUR-CHOICE APPLICATION 
 

 G. Schalk1 D.J. McFarland1 T. Hinterberger2 N. Birbaumer2 J.R. Wolpaw1 
1 Wadsworth Center, New York State Dept Health & SUNY, Albany, NY, USA  

2 Institute Medical Psychology Behavioral Neurology, Univ Tübingen, Tübingen, Germany  

 

Many labs are developing and testing BCI systems that are intended to provide new communication 

channels to those with severe motor disabilities.  These systems focus on different brain signals, use 

different signal processing methods, and control different output devices.  Many factors (e.g., the chosen 

brain signals, feature extraction methods, translation algorithms, output devices) determine the 

performance of each BCI system.  To optimize BCI performance, the alternatives for each factor need to 

be compared, combined, and tested systematically.  In response to this requirement, we have developed 

a documented general-purpose BCI research and development platform, called BCI2000, that is based on 

a general model of the BCI process and can incorporate alone or in combination any of the different 

possible BCI input signals (from neuronal spikes to slow cortical potentials), processing methods, and 

outputs. 

 

BCI2000 consists of four modules (signal acquisition, signal processing, output control, and operating 

protocol) that communicate through a network-capable protocol.  Each of the four modules can be 

executed on any machine on a network (e.g., the interface to the investigator may run on a different 

machine), and each module can be changed without affecting any other module. 

 

As an example of the utility and practical applicability of BCI2000, we will demonstrate its 

implementation of a spelling paradigm.  In this paradigm, the system calculates mu and/or beta rhythm 

amplitude at one or several scalp locations and uses the result to control cursor movement.  In each trial, 

the cursor moves from left to right at a constant rate with its vertical movement controlled by the user’s 

EEG.  The user’s goal is to hit the correct one of four possible targets on the right edge of the screen.  

After an initial screening protocol and training, users can achieve accuracies of 70%-95% (note that 

accuracy in the absence of any user control would be 25%). 

 

Supported by the National Center for Medical Rehabilitation Research, NIH. 



 

 

111 

MU/BETA RHYTHM-BASED BRAIN-COMPUTER INTERFACE (BCI): 

IMPROVING PERFORMANCE WITH TIME-DOMAIN SIGNAL FEATURES 
 

H. Sheikh, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw 

Wadsworth Center, New York State Department of Health and State 

Uiversity of New York, Albany, NY 12201 

 

People can learn to control the amplitude of the 8-12 Hz mu or 18-25 Hz beta rhythm of EEG recorded 

over sensorimotor cortex and use it to move a cursor to selections on a computer screen (e.g., 

Electroenceph Clin Neurophysiol 78:252-259, 1991 & 90:444-449, 1994). To define additional EEG 

features that could improve performance speed and accuracy (measured as bit rate), we are examining in 

the time-domain EEG activity recorded from 64 scalp locations during BCI operation.  A trial begins with 

the appearance of a target occupying one of the four quarters of the right screen edge.  A cursor appears 

in the middle of the left screen edge 1 sec later and moves steadily across the screen in 2 sec. The user's 

mu or beta rhythm amplitude at one or several locations over sensorimotor cortex controls vertical cursor 

movement and thus determines whether the target is hit. We examined in the time-domain the EEG activity 

associated with topmost and bottommost targets. Time-domain EEG at specific times during the trial and 

at specific electrodes is significantly correlated with target location. These times and electrodes vary 

among users. The results imply that time-domain EEG analysis properly tailored to each user could 

supplement current frequency-based analyses and improve BCI performance.  

 

Supported by the National Center for Medical Rehabilitation Research, NIH. 
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DETECTION OF EVENT-RELATED SIGNALS IN ELECTROCORTICOGRAM 

 

W.M. Sowers, J.A. Fessler, S.P.Levine, J.E. Huggins 

The University of Michigan—Ann Arbor 

 

Introduction 

A direct brain interface (DBI) is defined as a human-computer interface that accepts voluntary commands directly from the brain.  

The University of Michigan DBI is based on the detection of event related activity in electrocorticogram (ECoG).  The movements used 

here are not prompted by a cue, thus the DBI must detect the execution of a particular movement without the knowledge of when that 

movement might occur.   

 

Two distinct forms of neural activity have been observed in ECoG during the preparation and execution of a movement.  Event-

related potentials (ERPs) are time-locked and phase-locked to an externally or internally paced event and can be understood in terms of the 

response of a stationary system with a specific neuronal circuitry.  Event-related desynchronization and synchronization (ERD/ERS) are 

also time-locked, but not phase-locked, and can be understood as an alteration in the ongoing neural activity resulting from changes in the 

functional connectivity within the cortex or from changes in various feedback loops [1].  These phenomena may occur individually or 

linked together spatially and temporally [2]. 

 

Methods 

The current method for the DBI is based on the single channel detection of ERPs in ECoG [3].  Averaged ECoG templates are 

developed using triggered averaging, where the trigger is directly derived from some aspect of the external movement.  For detection, 

normalized cross-correlation is performed between the template formed from a training set and the continuous ECoG from the test set, and 

the result is compared to a set threshold.  

 

This correlation detector is optimal for the model assuming a known signal in additive white Gaussian noise.  Experimental 

observations, however, show that the noise is not white as it is neither uncorrelated nor stationary (see Results).  For this model assuming 

“colored” noise, it can be shown that the optimal detector depends on the covariance of the time samples.  The problem with this model 

is that, because the ERP may last several seconds, we can never expect to have enough event observations from a given subject to estimate 

the full covariance matrix.  Thus, there is no way to implement the optimal detector. 

 

An alternative would be to improve the performance of the detection scheme by using other information present in the ECoG.  

Neural activity such as ERD/ERS is not phase-locked and, therefore, is absent from the averaged template used in the Gaussian model 

described above.  By using additional features, we can exploit information in the signal that is ignored by the correlation detector.  Two 

feature sets that have been investigated for this purpose are the Hjorth parameters [4] and the adaptive autoregressive parameters [5]. 

 

Results 

We have identified that both increases and decreases occur in the intertrial variance of the ECoG data that are correlated with the 

event.  This confirms that the noise in the additive Gaussian noise model is not white, and thus the correlation detector is not optimal. 
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Preliminary results using the additional parameter sets indicate that detection performance may increase on average when certain 

features are combined with the ERP information.  This indicates that additional signal information exists in the ECoG that is not present 

in the ERP. 

 

Discussion 

If we can determine a simplified model for the data by assuming some underlying structure for the covariance of the additive Gaussian 

noise, then it may be possible to estimate a covariance matrix from the observations that is more descriptive than that assuming white noise.  

Using this information, an improved detector based on the ERP could then be developed.  Future improvements are also expected to 

result from the identification of the particular features in the data that are most predictive of an event. 
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BRAIN-COMPUTER WIRELESS DATA COMMUNICATION THROUGH VOLUME CONDUCTION 

 

Mingui Sun, Marlin Mickle, Chung-Ching Li, Donnald J. Crammond, Brian L. Wessel, Paul A. Roche, Qiang Liu, Wei Liang, Robert J. 

Sclabassi 

Laboratory for Computational Neuroscience 

Departments of Neurosurgery, Electrical Engineering, and Bioengineering 

University of Pittsburgh, Pittsburgh, PA 15260 

 

Current research on implantable brain-computer interface has been focused on recording and interpreting signals from the human 

cortex. Sophisticated electrodes and implantable chips have been developed to interface with the brain. However, one extremely important 

problem has not yet been addressed: How do we wirelessly pass this information to the computer outside the human body? Radio 

transmission is unsuitable due to the shielding effect of brain tissues and power restrictions. We have been investigating an alternative 

approach based on the mechanism of volume conduction of biological tissues. 

 

We have performed theoretical investigation on the volume conduction properties of the human head and computed scalp potential 

distribution in response to both implanted current dipoles and transmitters (antennas) of different shapes within the brain. A spherical 

model was physically constructed to verify theoretical results.  A number of experiments have been performed on animals to wirelessly 

transmit data from an implanted volume conduction antenna. 

 

Our study and experiments have produced encouraging results. We found that: 1) data can be transmitted wirelessly with a good 

signal to noise ratio by emitting a small amount of current from  the antenna; 2) the volume conduction based data transmission channel 

obeys the reciprocity theorem which constitutes the same sensitivity regardless of the direction of information flow (from brain to computer 

or from computer to brain; 3) using a new antenna design the far-field potential distribution, which effectively passes signal from the 

transmitter to the receiver, can be greatly enhanced; and, 4) the data communication module on the implantable device within the brain is 

very energy-efficient, potentially providing a mechanism to support continuous operation lasting for a life time. The details of these results 

will be demonstrated on a poster at the conference. 

 

This work was supported in part by National Institutes of Health grant No. NS43791 and Computional Diagnostics, Inc. 
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ADAPTIVE BCI BASED ON VARIATIONAL INFERENCE 

 

P. Sykacek1, S. Roberts1, M. Stokes2 
1 Department of Engineering Science, University of Oxford, Oxford, UK  

2 Research Department, Royal Hospital for Neurodisability, Putney, London, UK 

 

Abstract 

The objective of our work is to improve the bit rate of existing BCI systems. We propose for that purpose a fully adaptive 

classifier which adapts to modified user behaviour. When applied to binary and 1-of-3 classification of single trial EEG, the 

proposed system significantly outperforms the corresponding offline method. 

 

An adaptive variational classifier 

Adaptive classification refers here to an algorithm that constantly adapts to user behaviour. We assume that the joint density pn (yn, 

xn) over cognitive states yn and some pattern xn extracted from the EEG signal is time dependent. Assuming that the cognitive states can 

occur only exclusively, yn is coded as a 1 of c target coding for which we predict posterior probabilities P(y n|xn). We model the classifier as 

a generalized linear model with a nonlinear feature space spanned by a set of basis functions and use a logistic output transformation. 

Adaptive inference is mathematically best described as state space formulation of a first order Markov process.  

 

Assuming a linear model and Gaussian noise, this leads to the well known Kalman filter equations. In our case wn are the coefficients 

of the classifier, which is nonlinear and non Gaussian. Past discussions of analytic solutions for such models have used the ideas of the 

extended Kalman filter (e.g. [dFNG98]) to find a Laplace approximation of the posterior. 

 

We propose here a method for adaptive nonlinear classification which is based on variational Kalman filtering. Variational methods 

are attractive for BCI systems because compared with Laplace approximations they allow for more flexibility and, contrary to particle filters, 

they still provide a parametric form of the posterior. For the adaptive model discussed in this paper, using a variational method affects 

primarily how we estimate the precision of the process noise λ. Variational methods have recently been quite popular tools for inference 

in probabilistic models (see e.g. [JGJS99]). 

The key idea of variational inference 

as applied for our work is to find a 

lower bound of the log evidence (2), 

which is then maximized with respect to all 

variational parameters introduced in 

 

(1) 

 

(2) 
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setting up this bound. 

 

 

 

 

 

 
 
 

Cognitive task 

 
Generalization results 

 
vkf 

 
vsi 

 
Pnull 

 
navigation/auditory, 

 
0.86 

 
0.85 

 
0.02 

 
navigation/movement 

 
0.8 

 
0.8 

 
0.31 

 
auditory/movement 

 
0.78 

 
0.76 

 
0 

 
navig./audit./move, 3 class 

 
0.75 

 
0.73 

 
0 

 

Table 1: This table shows a summary of a series of BCI experiments that were carried out by 10 untrained subjects. Column vkf and vsi show 

the generalization accuracies obtained with the variational Kalman fillter and with variational sequential inference. The last column shows 

the probability of the null hypothesis that the two classifications are equal. We obtain in 3 of 4 experiments a significant improvement over 

the offline method. The quoted results are obtained without reject option, i.e., we classify every segment in the data. 

 

Single trial results  

The data used in these experiments is EEG recorded from 10 young, healthy and untrained subjects while they perform different 

cognitive tasks. The experiments are based on 3 cognitive tasks: an auditory imagination, an imagined spatial navigation task and an 

imagined right motor task. Each task was performed for 7 seconds. Each experiment consisting of alternating these tasks was repeated for 

10 times. The recordings were taken from 2 electrode sites: T4, P4 (right tempero-parietal for spatial and auditory tasks), C3' , C3" (left motor 

area for right motor imagination). The ground electrode was placed just lateral to the left mastoid process. The data were recorded using an 

ISO-DAM system (gain of 104 and fourth order band pass filter with pass band between 0.1 Hz and 100 Hz). These signals were sampled 

with 384 Hz and 12 bit resolution. 

 

The computer experiment reported in table 1 is based on extracting reflection coefficients from the recorded EEG signals (2 seconds 

windows, 1 second offset, further details can be found in [SRR + 01]). The classification experiment compares variational Kalman filtering 

(column vkf) with non adaptive variational sequential inference (column vsi). All predictions are done on a 1 seconds basis, without 

smoothing or reject options. In order to allow the method to converge, predictions are obtained from the second half of the data.  

 

The probability of observing these results under the null hypothesis that the classifiers are equal is shown in the third column. In 3 
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cases we can reject this null hypothesis at a p-value of 0.05. Hence we may conclude that the adaptive method leads to a significant 

improvement of BCI bit rates. 
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ANNIEM8: A BRIEF SUMMARY OF MASTERS RESEARCH 

David J. Weston 

Warwick University, Coventry, England  

 

ANNIEM8 utilizes a significant proportion of practical EEG analysis and pattern classification.  Raw EEG data were obtained from 

sources in the UK and US that contained free running off-line EEG, collected during movement imagery tasks involving left and right side 

motor cortices. The data was originally sampled at 125Hz.  

To simplify data analysis, I first segregated data obtained from electrodes C3 and C4 from the whole 25-electrode montage.  

Following this I band-pass filtered the extracted data between 8-12Hz to isolate mu-activity. The filtered data was segmented into discrete 

subsets that represented 1 second of EEG (125 values). 

This subset formed a window on the entire EEG dataset.  The waveform displayed in each window was manually classified as 

exhibiting either an event-related desynchronization (ERD) or some other activity e.g. event-related synchronization (ERS).  The window 

was gradually moved over the data with each iteration until the whole dataset was classified.  This process was repeated for both left and 

right cortices independently.  A value of one was recorded for an ERD feature whilst a zero represented any other activity. 

The manually classified data was further divided into a training set and a testing set for classification by an artificial neural network 

(ANN).  The ANN comprised of 125 input nodes, 50 hidden nodes and 1 output node. The ANN assumed a multi-layer perceptron 

topology and implemented the back-propagation algorithm.  The network was trained with 1000 iterations of the training data with 

cessation occurring when the network error reached 0.03. 

To improve the network classification accuracy I normalized the data before training commenced.  Normalization is similar to 

finding a mean, as a different set of data will generate a unique normalization score.  The third and final data pre-processing technique 

involved performing Independent Components Analysis on the raw EEG data.  The algorithm was permitted to calculate all independent 

components with a covariance eigenvalue greater than zero. 

The relative results of the three data pre-processing techniques are shown as averages in the table  

below: 

 
 
 

 
ORDINARY (%) 

 
NORMALIZED (%) 

 
ICA (%) 

 
NETWORK 

 
92.3 

 
98.2 

 
99.9 
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LEFT SIDE (C3) 73.5 89.9 99.1 
 
RIGHT SIDE (C4) 

 
66.9 

 
88.1 

 
98.7 

 

The public domain software named NETLAB implemented as a MatLab toolkit was used for all ANN functionality.  Having 

classified all datasets I joined the left and right side network outputs together to give a sequence of commands.  Each command was a 

member of the set {0,1,2,3}. 

 

This coding scheme is summarized in the table below: 
 
LEFT SIDE (C3) 

 
RIGHT SIDE (C4) 

 
C3/C4 ACTIVITY 

 
ROBOT COMMAND 

 
0 

 
0 

 
ERS/ERD 

 
0 

 
1 

 
0 

 
ERD/ERS 

 
1 

 
0 

 
1 

 
ERS/ERD 

 
2 

 
1 

 
1 

 
ERD/ERD 

 
3 

 

A wheelchair simulation and navigation system was developed in Java 1.1.6.  A robot image to navigate a pre-determined static 

environment according to the command sequence described earlier.  To allow rather complex robot behaviour, given the limited 

command set, a state transition model or deterministic finite automaton was proposed that afforded command reuse.  To ensure that the 

robot successfully completes the given environment, the ANN-generated command sequence is re-ordered according to a template of 

desired movement and behaviour. I also added collision detection and avoidance facilities to the robot to override potentially dangerous 

action by the user. 
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Gerwin Schalk 

Laboratory of Nervous System Disorders 

Wadsworth Center 

New York State Department of Health 
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Laboratory of Nervous System Disorders  
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New York State Department of Health 

P.O. Box 509 

Albany, New York 12201-0509 

phone: 518 473-3630 

shain@wadsworth.org 
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Laboratory of Nervous System Disorders 

Wadsworth Center 

New York State Department of Health 

P.O. Box 509 

Albany, New York 12201-0509 

phone: 518-474-7958 

fax: 518-486-4910 

sheikh@wadsworth.org 
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Dept. of Physical Medicine and Rehabilitation  
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fax: 734-936-1905 
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Electrical Engineering and BioEngineering 
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Department of Neurosurgery 
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Pittsburgh, PA 15213 

phone: 412-648-9234 
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Dept. Engineering Science  
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Parks Road, Oxford OX1 3PJ 

phone:  +44-1865/274745 
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Neuromechanical Control Lab 

Bioengineering 
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phone: 480-727-6010 
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fax: 518-486-4910 
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Box 951596 3531D BH 
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phone: 310-825-2858, 310-825-1322 

vidal@cs.ucla.edu 
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phone: 301-402-4201     

fax:  301-402-0832 
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Warwick University  
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University of Tuebingen 

Tuebingen, Germany 

phone: +49-7071-2974219 

fax: +49-7071-295956  

 

Justin C. Williams, Ph.D. 

Department of Biomedical Engineering 

University of Michigan 

Ann Arbor, MI 48109-2125 

phone: 734-647-2123 

fax: 734-936-2116 

Department of Neurosurgery 

University of Wisconsin 

Madison, WI 53705 
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LOCAL RESOURCES 

 

 

Conference Center, The Rensselaerville Institute, Rensselaerville, NY  

Telephone: 518-797-5100 

Fax: 518-797-3692  

  

Medical and Dental 
Emergency: 911 

Emergency Room, Albany Medical Center Hospital: 262-3131 

Helderberg Medical Associates, Berne: 872-9262 

Greenville Family Dental Center: 966-5323 

 

Religious Institutions in Rensselaerville 
Trinity Episcopalian Church, Rensselaerville: 797-5295 

Catholic Service at Trinity Episcopalian Church at 9:00 am 

 

Restaurants 
The Palmer House, Rensselaerville: 797-3449 

Thompson’s Lake Enterprises, East Berne: 872-2353 

 

Airline Reservations and Flight Information 
American 1-800-433-7300 

Continental 1-800-523-3273 

Delta 1-800-221-1212 

United 1-800-241-6522 

US Airways 1-800-428-4322          


