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In our current work, our subjects do not attempt to exert control over some device. Instead, we simply ask them 
to perform various mental tasks. Our objective is to find patterns in their spontaneous EEG that reliably appear while 
they are performing one of the tasks. 

Subjects were asked to perform the following five mentaJ tasks. 

Baseline Task: The subjects were not asked to perform a specific mental task, but to relax as much as possible and 
think of nothing in particular. This task is considered the baseline task for alpha wave production and used as a control 
measure of the EEG. 

Letter Task: The subjects were instructed to mentally compose a letter to a friend or relative without vocalizing. 
Since the task was repeated several times the subjects were told to try to pick up where they left off in the previous 
task. 

Math Task: The subjects were given nontrivial multiplication problems, such as 49 times 78, and were asked to 
solve them without vocalizing or making any other physical movements. The problems were not repeated and were 
designed so that an immediate answer was not attainable. Subjects were asked after each trial whether or not they found 
the answer, and no subject completed the problem before the end of the IO-second recording trial. 

Visual Counting: The subjects were asked to imagine a blackboard and to visualize numbers being written on the 
board sequentially, with the previous number being erased before the next number was written. The subjects were 
further instructed not to verbally read the numbers but to visualize them, and to pick up counting from the previous 
task rather than starting over each time. 

Geometric Figure Rotation: The subjects were given 30 seconds to study a drawing of a complex three dimensional 
block figure after which the drawing was removed and the subjects instructed to visualize the object being rotated about 
an axis. 

Data were recorded for JO seconds during each task and each task was repeated five times per session. Most 
subjects attended two such sessions recorded on separate weeks, resulting in a total of 10 trials for each task. 

2. EEG Components and Representations used

EEG from six electrodes at C3, C4, P3, P4, 01 and 02, was sampled at 250 Hz and filtered to 0.1-100 Hz. These
six time series were divided into half-second segments that overlap by one quarter-second, producing at most 39 
segments per trial after discarding segments containing eye blinks, identified by large voltage changes in an EOG 
channel. 

Based on the success of others [Keim and Aunon(1990)], we focused on signal representations based on AR 
models and on Fourier Transforms. In choosing an AR model order, we found that the AIC criterion is minimized for 
orders of two ani:1 three [Stolz(1995)]. However, based on previous results by Keirn and Aunon, an order of six was 
used. For one subject performing 10 trials of each of the five tasks, a total of 1,385 half-second segments were 
collected, with 277 segments from each of the five tasks. 
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To compare with the performance of the AR representation, a power spectrum density representation (PSD) was 
implemented using the same data segment of 125 samples, or one-half second, with a quarter-second overlap. Data 
segments were windowed with the Hanning window and a 125-point PFT was applied, resulting in a 63-point power 
spectrum density spanning O to 125 Hz with a resolution of 2 Hz. 

We also generated reduced-dimensionality versions of the AR and PSD representations via a Karhunen-Loeve (KL) 
transformation [Jollife(l 986)), in which the eigenvectors of the covariance matrix of all AR or PSD vectors are 
determined and the AR or PSD vectors are projected onto a subset of the eigenvectors having the highest eigenvalues. 
The key parameter of this transformation is the number of eigenvectors onto which each vector is projected. A common 
way to choose this number is to set it equal to the global Karhunen-Loeve estimate, given by the smallest index i for 
which J.i l"-m.,,, s 0.01, where the~ are the eigenvalues in decreasing order for i = 1, 2, .... 

For the AR representation of all segments from the five tasks, the global KL estimate is 31, a small reduction from 
the original 36 dimensions of the representation. For the PSD representation, the global KL estimate is 21. This is a 
large reduction from the 378 dimensions of the PSD representation. 

3. Neural Network Classifier 
The classifier implemented for this work is a standard, f cedforward, neural network with one bidden layer and one 

output layer, trained with the error backpropagation algorithm [Rumelhart el al.(1986), Hassoun(I 995)]. The output 
layer contains five units, corresponding to the five mental tasks. Their target values were set to 1,0,0,0,0 for the 
baseline task, 0, 1,0,0,0 for the letter task, 0,0, 1,0,0 for the math task, 0,0,0, 1,0 for the counting task, and 0,0,0,0, I for 
the rotation task. After trying a large number of different values, we found that a learning rate of 0.1 for the hidden 
layers and 0.01 for the output layer produced the best performance . 

To limit the amount of over-fitting during training, the following I 0-fold, cross-validation procedure was 
performed. Eight of the ten trials were used for the training set, one of the remaining trials was selected for validation 
and the last trial was used for testing. The error of the network on the validation data was calculated after every pass, 
or epoch, through the training data. After 3,000 epochs, the network state (its weight values) at the epoch for which 
the validation error is smallest was chosen as the network that will most likely perform well on novel data. This best 
network was then applied to the test set; the result indicates how well the network will generalize to novel data. With 
10 trials, there are 90 ways of choosing the validation and test trials with the remaining eight trials combined for the 
training set. Results described in the next section are reported as the average classification accuracy on the test set 
averaged over all 90 partitions of the data. Each of the 90 repetitions started with different, random, initial weights. 

The neural networks were trained using a CNAPS Server II (Adapt1ve Solutions, Incorporated), a parallel, SIMD 
architecture with 128, 20 MHz, processors, upgradable to 512 processors. Training a neural network with a single 
hidden layer containing 20 hidden units (a 20-0 network) took an average of 3.2 minutes on the CNAPS, while on a 
Sun SparcStation 20, the same experiment took an average of 20 minutes. An experiment of 90 repetitions required 
4.8 hours on the CNAPS and 30 hours on the SparcStation. 

4. Results 
Figure I summarizes the average percent of test segments classified correctly for various-sized networks using 

each of the four representations. For one hidden unit, the PSD representations perform better than the AR 
representations. With two hidden units, the PSD-KL representation performs about 10% better than the other three. 
With 20 hidden units, the KL representatjons perform worse than the non-KL representations, though the difference 
is not statistically significant. 

27 



60 

Percent of 
50 L---' 

Test f-
Segments 45 / 
Correctly : 

Cla5SI�

: t / 

AA 

PSD-Kl 
--

25L....J.....J.---'------'-----------' 
20 1 2 5 10 

Number of Hidden Units 

Figure 1: Average percent of test segments correctly classified. Error
bars show 90% confidence intervals. 

Inspection of how the network's classification changes from one segment to the next suggests that better
performance might be achieved by averaging the network's output over consecutive segments. To investigate this, a
20-unit network trained with the AR representation is studied. The left column of graphs in Figure 2 show the output
values of the network's five output units for each segment of test data from one trial. On each graph the desired value
for the corresponding output is also drawn. The bottom graph shows the true task and the task predicted by the network.
For this trial, 54% of the segments are classified correctly when no averaging across segments is performed. The other
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Figure 2: Network output values and desired values for one test trial. The first five rows
of graphs show the values of the five network outputs over the 175 test segments. The
sixth row of graphs plots the task determined by the network outputs and the true task.
The first column of graphs is without averaging over consecutive segments, the second
is for averaging the network output over ten consecutive segments, while the third

column is for averaging over twenty segments. 
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two columns of graphs show the network's output and predicted classifi cation that result from averaging over 10 and 

20 consecutive segments. Confusions made by the classifier are identified by the relatively high responses of an output 
unit for test segments that do not correspond to the task represented by that output unit. For example, in the third graph 
in the right column, the output value of the math unit is high during math segments, as it should be, but it is also 
relatively high during count segments. Also, the output of the count unit, shown in the fourth graph, is high during 
count segments, but is also re latively high during Jetter segments . 

For this trial, averaging over 20 segments results in 96% correct, but performance is not improved this much on 
all trials. The bes.t classification performance for the 20 hidden unit network, averaged over all 90 repetitions, is 
achieved by averaging over all segments. Table 1 summarizes the significant information, showing that the AR 
representation performs the best whether averaging over 10 or 20 segments, but when averaging over 20 segments, the 
AR and AR-KL representations perform equally well. The PSD and PSD-KL representations do consistently worse 
than the AR representations. 

Representation 

AR 

AR-KL 

PSD 

Percent Correct 

Averaging over 
10 Segments 

68% 

65% 

65% 

Averaging over 
20 Segments 

72% 

70% 

65% 

PSD-KL 55% 57% 

Table 1: Summary of performance on test data as average percent correct over 90 repetitions . 

5. Future Plans 
Our current work has three objectives. The results summarized here are not based on information about how EEG 

changes over time. One of our objectives is better classification accuracy through representations that include such 
temporal information. Therefore, we are continuing our exploration of various signal representations, including 
wavelets, independent component analysis, desynchronization, and coherence. 

A second objective to our work is to develop tools to analyze and visualize what the neural networks are learning. 
We have found that by inverting the neural network, we can determine a set of fictitious EEG signals that the trained 
neural network would most strongly classify as one or another task. This gives us a sense of the discriminations the 
trained nets are making . 

A third objective of our work is a portable EEG acquisition and analysis system will provide the type of 
classification results described here in real time. This would lead to an exciting biofeedback protocol in which the 
subject can modify how they perform a mental task wh ile observing the system' s classification confidence. Our hope 
is that even a small bit of training with such a system will result in increased classification accuracy. 
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A VIRTUAL REALITY TESTBED FOR BRAIN-COMPUTER INTERFACE 
RESEARCH• 

1, The System 

J. D. Bayliss and D. H. Ballard 
Department of Computer Science 

University of Rochester 

Recent BCI work has shown the feasibil ity of on-line averaging and biofeedback methods in order to choose 
characters or move a cursor on a computer screen with up to 95% accuracy [McFarland e t al., 1993; Pfurtscheller et 
al., 1996; Vaughn et al., 1996; Farwell and Donchin, 1988). Virtual reality (VR) promises to extend the realm of 
possible prototypes through allowing subjects to interact directly with the environment rather than a computer monitor 
while still maintaining environmental control. Funhermore, the safety of VR makes it an excellent candidate for BCI 
research on tasks such as driving. 

The YR environment is rendered on a SGI Onyx with 4 R 10,000 processors and an Infinite Reality graphics engine. 
A flexible program for graphics rendering enables researchers to easily switch environments. For immersion, subjects 
wear a head-mounted display (HMO) containing an eye tracker. 

The heart of this system is a NeuroScan commercial package for EEG signal acquisition (called Acquire). After 
the EEG signal and trigger codes enter the Acquire program, they are grabbed from the acquisition buffer via a dynamic 
linked library (DLL) provided by NeuroScan. This library enables tht! locally written software to have access to the 
unprocessed data and trigger codes. The DLL is called from within a recognition and feedback program. This program 
chooses which data need to be sent for further processing via the Matlab program. This program may give audio 

• feedback to the user after recognition occurs, send return information to the SGI through a serial port interface, save 
recognition data, calculate whether recognition has actually occurred (using trigger codes), and can read previously 
processed data from a Matlab file for a demonstration of the speed of recognition. -

-
-
-
• 

-
• 

• 

• 

In order to enable easy use of different recognition routines, all routines are Matlab m-files. While compiled 
programs are faster than m-files, we have not had a problem with speed and find the general interface ehcourages the 
use of new computer algorithms for processing. 

2. Assessment of Results 
Several ways of assessing results are available. The most obvious is to analyze the EEG signals after a session. We 

use the NeuroScan analysis package as well as several locally written Matlab routines. On-line single trial EP 
recognition via different algorithms enables a direct assessment of BCI recognition abilities. During a session we record 
all visual data to videotape. 

Our lab is also equipped with an eye tracker in the VR HMO. While the eye tracker is not necessary for BCI 
research, it may enable better analysis of results since subjects tend to look at what they're thinking about. It also allows 
comparisons between BCis and eye tracking for particular subjects. 

3. The Task 
VR allows subjects to make on-line decisions in a dynamic environment. Thus, the best tasks for this environment 

involve interaction with physical objects. The flexibility of the VR environment allows a concentration on interface 
issues before building a BCI in the real-world. 

To this end, we have used two environments; a driving environment to look at on-line driving issues and a two 

*This research was supponed by NIH/PHS grantl-P41-RR09283. It was also facilitated in part by a National 
Physical Science Consortium Fellowship and by stipend support from NASA Goddard Space Flight Center 
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bedroom apartment in order to look at issues related to controlling appliances automatically as well as simple speech 
(see Figure 1 ). 

Figure 1. (Left) A typical stoplight scene in the virtual driving environment. (Right) The living 
room of a virtual apartment. 

3.1. EEG Components Used 
In order to test the feasibi lity of on-line recognition in the noisy VR environment, we recognized the P3 EP, 

discovered by [Chapman and Bragdon, 1964; Sutton et al., 1965). It is a positive waveform occurring approximately 
300-450 ms after an infrequent task-relevant stimulus. 

Previous P3 research has concentrated primarily on static environments such as the continuous performance task 
[Rosvold et al., J 956]. In the visual c0ntinuous performance task, static images are flashed on a screen and the subject 
is told to press a button when a rare ... timulus occurs or to count the number of occurrences of a rare stimulus. This 
makes the stimulus both rare and task relevant in order to evoke a P3. As an example, given red and yellow stoplight 
pictures, a P3 should occur if the red picture is Jess frequent than the yellow and subjects are told to press a mouse 
button only during the red light. 

3.2. The Stoplight Experiment 
We assumed a similar response would occur in a VR driving world if red stoplights were infrequent and subjects 

were told to stop their virtual cars at the red light. In order to make yellow lights more frequent, both green and red 
lights were preceeded by yellow lights. Red lights change to green after 3 seconds and the red light condition is 
triggered only when subjects are close to the stoplight so that subjects will have to begin stopping when the red light 
is triggered. 

T~e subjects used a modified go cart in order to control the virtual car. We chose go cart driving because it is more 
like a ''natural" driving task than driving and stopping with a mouse. While this choice may cause a more artifacts in 
the signal collection (due to turning the steering wheel and braking), most of the actual artifact in the data was 
discovered to be due to eye movement. 

A trigger pulse containing information about the color of the light was sent to the EEG acquisition system 
whenever a light changed. While an epoch size from -100 ms to l sec was specified, the data was recorded 
continuously. Information about head position as well as gas, braking, and steering position were saved to an external 
file. 

Eight electrodes sites (FZ, CZ, CPZ, PZ, P3, P4, as well as 2 vertical EOG channels) were arranged on the heads 
of five subjects with a linked mastoid reference. Electrode impedances were between 2 and 5 kohms for all subjects. 
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The EEG signal was amplified using Grass amplifiers with an analog bandwidth from 0.1 to 100 Hz. Signals were then 
digitized at a rate of 500 Hz and stored to a computer. 

In order to determine that the P3 EP occurred only at red stoplights, we calculated the averages over red light and 
yellow light trials with trials where the subject ran a red light (approximately 2 per subject) removed. As expected, the 
data obtained while driving contained artifacts. In order to reduce these artifacts before averaging, we preprocessed 
the data and subtracted a combination of eye and head movement artifact using the linear regression technique 
described in [SemUtsch et al., 1986]. Results show that a P3 EP indeed occurs at red and not yellow lights [Bayliss and 
Ballard, 1999]. 

Table l. RecoITTlition Results (o < 0.01) 

Robust Kalman Filter %Correct 
Subiects Red Yel Total 

SI 55 86 77 
S2 82 94 90 
S3 74 85 81 
S4 65 91 82 
S5 78 92 87 

T bl 2 R a e eturn Sb' R ecoen1bon u ,1ect R esu ts 
Robust K- Filter %Correct 

Subiects Red Yel Total 
S4 73% 90% 85% 
S5 67% 87% 80% 

3.2.1. Results 
While averages show the existence of the P3 EP at red lights and the absence of such at yellow lights, we needed 

to discover if the signal was clean enough for single trial recognition as the quick feedback needed by a BCI depends 
on quick recognition. We tried four methods for classification of the P3 EP: correlation, independent component 
analysis (ICA), a Kalman filter, and a robust Kalman filter. While all algorithms performed significantly better than 
correlation with the light averages (p < 0.01 ), we will only report the results of the best algorithm, the robust Kalman 
filter in Table 1. Approximately, 90 yellow light and 45 red light trials from each subject were classified. The reason 
we allowed a yellow light bias to enter recognition is because the yellow light currently represents an unimportant 
event in the environment. In a real BCI unimportant events are likely to occur more than user-directed actions, making 
this bias justifiable . 

Data was preprocessed with the method described in the previous section. We used the robust Kalman filter 
framework formulated by Rao [Rao, 1997). The robust Kalman filter is trdined using red and yellow light averages 
from the maximal electrode site for obtaining the P3 for each subject. We used the whole trial epoch for recognition 
because it yielded better recognition than just the time area around the P3 . 

In order to look at the reliability of the robust Kalman filter two of the Subjects (S4 and S5) returned for another 
VR driving session. The results of this session using the robust Kalman Filter trained on the first session are shown 
in Table 2. The recognition numbers for red and yellow lights between the two sessions were compared using 
correlation. Red light scores between the sessions correlated fairly highly - 0.82 for S4 and 0.69 for SS. The yellow 
light scores between sessions correlated poorly with both S4 and S5 at around -0.1. This indicates that the yellow light 
epochs tend to correlate poorly with each other due to the lack of a large component such as the P3 to tie them together. 

3.3. The Apartment Environment 
The stoplight experiment showed that EPs could be reliably detected in a YR environment. In order to take full 

advantage of the benefits of VR, a two bedroom virtual apartment was constructed. Various items in the apartment 
perform a function. For instance, the light, tv, and stereo may turn on/off. Simple verbal utterances such as "hi" and 
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"bye" may be said to the graphical figures in the apartment. In order to enable users to back up if they choose a wrong 

option, a "cancel" option has been installed. 

3.3.1. An Apartment Communication Protocol 
Since single trial P3 epochs are used in picking an option, we have adopted an interface design similar to that 

proposed by Farwell and Donchin [Farwell and Donchin, 1988]. ln order to evoke a P3 they have constructed a matrix 
of flashing options. The idea behind this is that if a user wants to pick an option, (s)he will look at the box and a P3 
will be evoked when the box infrequently flashes. 

Our design differs in that the flashing 'buttons" are actually connected to the objects they control or are on the wall 
of the apartment if there is no physical object involved in the command. In this way, the commands available at any 
one time are dependent on the context of the environment and the user may ignore certain commands by attending to 
another part of the room. 

One basic reason for constructing this environment is that the user interface of the .BCI may greatly affect 
recognition ability. A pilot experiment in the apartment seems to confirm this. Six different flashing options (detailed 
above) were avai lable and flashed in a round robin fashion at approximately 1 every 4 seconds. 

In a pi lot experiment 10 tasks were attempted and 9 were completed. The average time for the completion of one 
simple task was 2.8 minutes. Now, at first glance this number appears horrible until one looks at the completion time 
for the tasks individuaJly. If the two stereo commands accomplished are removed from the average, then the average 
completion time for one task drops to 1.1 minutes. The subject could not seem to pick the stereo command and 
eventually gave up trying to pick it on the tenth task. The reason for this appears to be the location/size of the stereo 

object. 
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EEG RECOGNITION OF IMAGINED HAND AND FOOT MOVEMENTS 
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Abstract. EEG-based Brain Computer Interfaces require on-line detection of mental states from spontaneous EEG 
• signals. This paper reports on the use of the Signal Space Projection (SSP) method as a classifier. SSP is applied to

both raw and Surface Laplacian (SL) transformed EEG data from five healthy people performing three mental tasks,
namely imagined right and left hand as well as right foot movements.
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1. Introduction

It is well known that an EEG-based Brain Computer Interface (Ben requires on-line detection of mental waveform
patterns from spontaneous EEG signals. Several methods have been proposed to detect such patterns in the BCI 
framework. Here we report results obtained by applying the Signal Space Projection (SSP) algorithm [ 1,2) to EEG data 
from a group of five healthy people performing three motor-related mental tasks, namely imagined right and left hand 
as well as right foot movements. 

Previously, it has been suggested that the use of Surface Laplacian (SL) transformations increases the recognition 
performance of an EEG-based Brain Computer Interface [3,4]. We also demonstrated that recognition scores of 
imagined movements increase if one analyzes the all 8-30 Hz band instead of the separate alpha and beta frequency 
bands [4]. Hence, in this study we report results by using the SL transformation applied spectral EEG data in the 8-30 
Hz frequency interval. An important objective concerns the identification of a reduced number of channels for the SSP 
classifier to work. This is a critical issue in the design of a BCI: the fewer electrodes, the easier it is to operate by 
laypersons. Thus we have analyzed the results achieved using different number of electrodes placed over the fronto­
central-parietal scalp areas. 

2. Methods
The communication task.

The tasks used in this study consist in the imagination of the movement of left, right hand as well as right foot. 
Five healthy subjects (three male and two female) were recorded with 26 scalp EEG electrodes disposed over the scalp 
according to the extension of the 10-20 International system. Subjects were asked to imagine during 10 s the movement 
of the right middle finger or the left middle finger. As a control, subjects also performed actual right and left middle 
finger extensions during periods of 10 s each. Also, 10 s of rest EEG activity was recorded (subjects tried to relax with 
opened eyes) in between trials of actual and imagined movements. 

The Signal Space Projection 

In the Signal Space Projection method, the signals measured by n EEG electrodes are considered to form a time­
varying vector M(t) in an n-dimensional signal space. Each component vector-Le., the signals generated by a given 
neural source-has a fixed orientation in the signal space that, however, is different from each other. All the current 
configurations producing the same measured field pattern are indistinguishable on the basis of the field, and hence they 
have the same vector direction in the signal space and thus belong to the same equivalence cla�s of current 
configurations. If the direction of at least one of the component vectors forming the measured multi-channel signal can 
be determined from the data, or is known otherwise, the SSP method can be used to simplify the subsequent analysis. 
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SSP, as well as Principal Component Analysis and related methods, may not require any source or conductivity model. 
No conductivity or source models are needed if the component vectors are estimated from data. Thus, SSP determines

the patterns on which the recorded data will be projected directly from the measured signals. 1n contrast with Principal 
Component Analysis and other analysis methods, its source decomposition does not depend on the orthogonality of 
source components. 

I 

If M(t) is then-dimensional time-varying vector, it can be stated [2] : 

M(t) = S A(t) + N(t) (I) 

where the matrix S is formed by column vectors Si, S2, etc. that characterize time-independent spatial distributions. 
They are the "signal space components" of the signal. Each component A,(t) of the signal space waveform matrix A 
describes how the recorded EEG signals depend on the underlying sources over time. N(t) is the intrinsic system noise. 
The vector S; contains all the information about the spatial distribution of the ith equivalence class of sources, which 
is measured by the EEG array. The values of S; can be determined from any conspicuous feature present either in the 
raw or Fourier transformed data. If N(t) is normaJJy distributed, the unbiased estimate of A(t) is 

A(t) = s• M(t) (2) 

wheres• is the pseudoinverse of S. 

In this paper, we apply SSP to EEG spectral data in order to differentiate between three motor-related mental tasks, 
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namely imagined right and left hand movements as well as right foot movement. To recognize mental tasks on-line from • 
spontaneous EEG signals, we take short time segments (2 s) and estimate its log transformed spectral distribution. 
These data make up the matrix Mspcctrum(t). The three signal space components - or, just, spatial filters (S 1, S2, S3) -

required to classify the incoming EEG measures are specific for every combination of channels and frequency bands. • 
Individual spatial filters are obtained for every subject as the spectral estimation from 40 s of EEG activity while he/she 
was imagining a single movement (left or right hand, right hand). In our case, (2) becomes 

A(t) == S+ Mspectrum(t) 

as N,pectrum(t), the log transformed noise spectral distribution, is assumed to be normally distributed. 

The EEG components used 

(3) 

Surface Laplacian transformation was applied to EEG data by using spherical spline of order 2 (5). Previous 
results [4] led us to use the whole log-transformed spectrum from 8 to 30 Hz of the 6 centro parietal scalp electrodes 
(C3,Cz,C4,P3.Pz,P4) as well as of the 9 fronto-centro-parietal electrodes (F3,Fz,F4,C3,Cz,C4,P3,Pz,P4). The spectral 
estimation of each spatial filter, S 1 , S2 and S3, was calculated by means of the Welch procedure. Four 10 s blocks of 
Laplacian-transformed EEG data related to the imagination of right and left finger movement as well as foot movement 
were linked together and segmented into epochs of 2 s, with a 1 s shift. On each epoch a three half overlapping 
windowing, with windows 1 s long, was applied obtaining a resolution of 1 Hz. In this way we had, for each bin and 
for each channel, a number of spectrograms values depending on the epochs and windows overlaps. In order to obtain 
a reference spectrum to which normalize those values, the latter were averaged out along their epochs. In the end a log 
transformation was executed on all the spatial filters S 1 (imagined right motor task), S2 

(imagined left motor task) and 
S3 (imagined foot motor task) to make them more spaced out. 

3. Results

Fig. I illustrates part of the spatial filters computed by means of the SSP method. In order to cover the whole
cortex, these filters have been derived from all twenty-six electrodes. Also, for the sake of simplicity in the 
visualization, only the a band is used. The figure shows the distributions of the spatial filters in the subject RB for the 
imagined right and left movements as well as for the actual movements. 
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Fig.1. Representation of spatial filters in the cxband, estimated from 
spectral data, registered using 26 channels set-up, for the subject RB 

Note the similarity between imagined and actual distributions. Fig.2 (left) reports the averaged recognition rates of 
imagined right and left hand movements as well as imagined right foot movements using only the Surface Laplacian 
transformed data from the six centro-parietal electrodes. Results are shown for each of the five subjects investigated 
(CL, RA, MJ, RB, TA). Recognition scores for the detection of right imagined movements are in the range between 
78% and 91 %, almost the same obtained for left imagined movements (range between 77% to 90%) and for the right 
imagined foot movements (range between 80% to 92%). Fig. 2 (right) reports the averaged recognition rates of 
imagined right and left hand movements as well as the right foot imagined movements using all the nine fronto-centro­
parietal electrodes. Results are shown for each of the five subjects investigated. For the right imagined movement the 
range of the recognition scores was between 85% to 95%, while for the detection of the left imagined movement the 
range was between 82 to 92% and for the right foot movement was between 81 to 97% . 

37 

• 



6 Channels 9 Channels 

100 100 

90 90 
aCL 

80 80 aRA 

70 70 IIMJ 

60 
aRB 

60 
ElTA 

50 50 

Right Left Foot Right Left Foot 

Fig. 2. (Left) Recognition scores obtained by using SSP classification from six electrodes )centro-parietal; C3, 
Cz, C4, P3, Pz, P4) and surface Laplacian transformation in five healthy subjects right hand, left hand and foot 
imagined movements. (Right) Recognition scores by using nine electrodes (fronto-centro-parietal: F3, Fz, F4, C3, 
Cz, C4, P3, Pz, P4) in the same subjects and in the same condition seen above. 

Discussion and Future Plans 

A critical issue in the design of BCI concerns the number of electrodes to be used; the fewer electrodes, the easier 
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it is to operate by laypersons. This study has shown that six or nine electrodes, placed over fronto-centro-parietal areas, " 
are sufficient to detect two mental states related to imagined movements with the SSP technique. This is a promising 
result that opens the possibility to deploy BCI outside laboratory settings. Since an accurate SL estimate from raw 
potentials needs many electrodes, it may be argued that there is a contradiction with the previous requirement of using " 
as few electrodes as possible. Physical SL electrodes resolve this trade-off. Such SL electrodes are evaluated elsewhere 
[6]. 

To the best of our knowledge, this is the first time that S�P is applied to the recognition of mental states from EEG 
signals. Even though we have probably used the most elemental SSP-based classifier, the results achieved are quite 
promising. These results together with its computational simplicity make SSP particularly suitable for the on-li�e 
detection of mental states from spontaneous EEG signals. The simplicity of the classifier we have utilized suggests 
that it is still possible to increase the recognition rates if SSP is combined with more powerful classifiers. In

particular, SSP can be used as a preprocessor for an artificial neural network. This is subject to ongoing research. 

In this paper we have applied SSP to the recognition of motor-related mental tasks. Work in progress concerns 
the evaluation of SSP-based classifiers for cognitive mental tasks such as relaxation, cube rotation, and arithmetic. 
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1. Introduction 
A major step in the direction of improving the quality of the recorded EEG data is the use of reference-free 

potentials instead of the reference-dependent potentials. In fact, it is well known that the potentialsgathered by 
conventional EEG systems are blurred by the activity of the reference electrode used [3-6) . 

In the framework of the design of an EEG-based brain-computer interface, Wolpaw and McFarland' s results ( I] 
suggest that EEG patterns can be better detected with EEG data transformed with Surface LapJacian (SL) computation 
than with the unprocessed raw potentials. SL transformation of EEG data has been largely used in brain-computer 
interfaces ;:i lthough the computation of SL requires the use of many EEG electrodes (typicaJ ly 40-64). Such a necessity 
for a high number of electrodes is in contradiction with the requirement of portability and ease of use that a brain­
computer interface device must exhibit to aJJow its operation by laypersons. Currently, in the framework of a joint 
European project, wc arc developing an Adaptive Brain Interface (ABI) device that uses a helmet with up to 8 

electrodes and portable battery-driven amplifiers for the detection of several EEG patterns [7) . In this context, the trade­
off between the need for reference-free EEG data and the constraint of a low number of electrodes leads to employ a 
particular class of concentric insulated electrodes that produce a signal roughly proportional to the SL computation of 
the recorded EEG. Such electrodes, previously introduced in the EKG field [8,9], are characterized by different values 
of inner and outer radii of the conductive rings. The aim of the study was to determine the optimal inner and external 
radii of such laplacian electrodes in order to produce a signal as close as possible to the computed SL. Results indicate 
that SL electrodes made of a concentric ring of 3 or 5 cm diameter return a SL sjgnal very similar to the SL computed 
analitically. Hence, such SL e lectrodes could be successfully applied in a ll EEG recordings in which the number of 
e lectrodes prevents accurate numerical estimates of the Surface Laplacian, as in the case of brain-computer interfaces. 

2. Methods 
2. 1 Surface Laplacian Electrodes 

Two class of SL electrodes were built and used in this study. The first class of SL e lectrodes was designed with 
two conductive rings separated by a concentric insulated one. Such a design fo llows from the original proposal made 
in 1992 by He and Cohen (9] for th e application o f SL electrodes to EKG. Starting fro m the original measures for the 
inner and outer rings proposed by He and Cohen, we produced several SL electrodes with variable sizes. In particular, 
three types of coassial SL electrodes were built: type A with an inner radius of 8.5 mm and an outer radius of 10.5 mm; 
type B with 13.5 mm and 16.5 mm for the inner and outer radii, respectively; and type C with 15.0 mm and 18.5 mm 
for the internal and external radii, respectivel y. The Ag-AgCJ material was chosen for all the implementation of the 
conductive rings of the SL electrodes. The coassial conductive rings were insulated by a ring of plastic material. 

A second c)ac;s of SL e lectrodes was also designed and tested in the present study. It relies on a conductive ring 
of variable diameter size surrounding a normal EEG electrode placed at the center of the SL electrode. Two sizes were 
used for the diameter of the outer ring of such SL electrode, namely 3, and 5 cm, respectively. The signal of interest 
in all the SL electrodes employed was picked up as a difference between the central and the outer ring signals. Fig. 1 
shows an example of some of the SL e lectrodes developed and used in this study. It can be recognized from the figure 
the changes in size from the SL e lectrode originally proposed for the EKG (measure similar to the smaller electrode 
at the left of the figure) to the SL electrode composed by a conductive ring of 3 cm diameter size coupled with a 
standard EEG Jead (right of the figure) . 

2.2 EEG Recordings and Surface Laplacian 
Somatosensory Evoked Potentials (SEP), as obtained in response to a delivered electrical shock at the right wrist, 
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were recorded by twenty three electrodes placed over the sensorimotor areas contralateral to the stimulated hand. 

Fig.1. Some of the Laplacian electrodes used in the 
present study. On the left is presented the small SL 
electrode with a 1 .5 mm of insulator ring between 
the two conductive ones. At the center is 
represented a largercoassiaJ SL electrodes, while at 
the right there is the SL electrode composed by a 
circular ring of 3 cm diameter and a conventional 
EEG lead in the center. 

The FC3 position was chosen as the site to place the different Laplacian e lectrodes, since in such a position a clear 
SEP response was expected. Separate recording sessions were conducted by changing only the Laplacian electrode at 
the site FC3. The computed SL estimation was based on the implementation of Hjiorth method, thus approximating 
SL with the second order finite differences of the scalp potential distribution [2,10]. To assess the agreement between 
the signal picked-up by the SL electrode and those produced by the numerical computation of the SL in the same 
recording we used the correlation coefficient. 

3. Results 
The practical montage of the small SL electrodes of type A, Band C-i.e., those concentric coassial electrodes with 

the insulated ring of 2 mm and 3 mm width-was very difficult due to the shunts produced by the conductive gel 
injected between the electrode and the scalp. In fact, the very small separation (2-3 mm) between the two conductive 
rings in the coassial SL electrodes of type A, B and C made the gel to spread out from the rings and produce a shortcut 
between them. However, with a very carefully montage such shunting effects were avoided and the reported results for 
the small SL electrodes refer to experiments free from such effects. Such a problem was not present in the recording 
of the second class of electrode, principally for the increased distance between the two conductive rings ( 1-3 cm). Fig. 
2 gives an example of the quality of the recorded SEP data picked up from the rings of the SL electrodes. This figure 
shows waveforms from the external ring (Ring) and the central lead (FC3) of a SL electrode with a diameter of 5 cm, 
together with SEP waveforms recorded from the standard EEG leads surrounding the SL electrode. Such EEG leads 
are those used for the numerical estimation of the SL in the FC3 position. The labels for the waveforms presented in 
Fig. 2 correspond to those of the 10-10 International system. Table l reports the results of the correlation coefficient 
between the SEP signals recorded from all the SL electrodes employed in this study and the signal derived from the 
numerical SL on the same SEP recordings. The first row gives the value obtained for the correlation of unfiltered 
signals, while the second row provides the correlation values obtained by two of the signals filtered with a frequency 
bandpass between 1 and 350 Hz. It is worth noting that correlation coefficients lower than 0.3 were obtained for 
coassial SL electrodes of all three types-A, Band C-, what demonstrates theic unfeasibility. 
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ig. 2. An example of the quaJity of the recorded SEP 
dala picked up from the rings f 11 SL cl ctrode with a 
diameter of 5 cm. The waveforms relative LO Lhe 
conductive rings of the SL electrode are labelled with 
Ring for the external ring and F 3 for the inner ring. 
The other waveforms are relative to the electrod 
nearest to FC3 and used to compu1c th numerical SL in 

C3. The label for the e waveform correspond to Lho e 
u ed in the 10- 10 International y tern. 

Correlation values impro econ iderably f r L electrodes with concentric ring . ln the case of a concentric ring of 3 
cm of diam ter, the correlation coefficient wa, 0.6. Even better wa the value of the correlation coefficient for a 
concentric ring of about 5 cm of diameter. In thi case, the value increased up to 0.82. lt is aJso worth noticing that the 
correlation coefficient betwe n the numerical e timation of the SL and the ignal from the SL electrode with a large 
diameter ring (3-5 cm) incrca cd when low-pass filtering was applied to the recorded signals. For instance, in the case 
of the circular ring of 5 cm of diameter the correlation coefficient improved from 0.82 to 0.87. 

Tabl 1. Corr lation values between th numerical e ti mates of the SL and the ignal 
provided by th different SL electrode . SL electrode of type A w built with an 
inner radius of 8.5 mm and an outer radius of 10.5 mm, those of type B with 13.5 mm 
and 16.5 mm f r the two radii, and tho e of type C with 15. mm and 18.5 mm .forthe 
internal and extemaJ radii, r pectively. Other SL electrode wer built with a 
circular riag of 3 cm or 5 cm of diameter. 

Ring Ring 
Correlation Coefficient Typ A Type B TypeC diameter diameter 

3cm 5cm 

Raw 0.1 I 0.14 0.23 .62 0.82 

Filter d 0.13 0.15 0.23 0.64 0 . 7 
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4. Discussion 
Results obtained in this study suggest that SL electrodes of type A, B and C (i.e., SL coassial electrodes with an 

insulation ring of2-3 mm width) return waveforms poorly correlated with the numerically computed surfaceLaplacian. 
It is worth noticing that such electrodes presented measures of the inner and outer radii that were similar to those used 
successfully in the EKG field to produce reliable surface Laplacian waveforms. A possible explanation of this 
discrepancy in the results could rely on the different voltage of the EKG and EEG field over the torso and scalp, 
respectively. Such a different voltage is due to the existence of a highly resistive tissue between the cortical electrical 
sources ond the sensors in the case of EEG, namely the skull , that is not present in the EKG case. 

Different results were obtained with the SL electrodes made of a couple of electrodes, the central as a nonnal leud 
and the external as a circular ring of 3 - 5 cm of diameter. The large distance between the conductive rings prevent the 
shunting effects of the injected gel. The correlation between the data provided by this SL electrode and the numerical 
estimation of SL was rather good, reaching a value of 0.82 for the e lectrode with a concentric ring of 5 cm diameter. 
An even greater correlation was obtained by low-pass filtering the SEP waveforms with a maximum frequency o f 350 
Hz. A possible explanation for this results might be the higher sensitivity to the noise of the SL electrode with respect 
to the numerical computation of the SL. This figure can be improved by using low-noise amplifiers with more advanced 
characteristics than those provided by standard commercial EEG devices. However, for the purpose of the Adaptive 
Brain Interface, the band pass 1-350 Hz is adequate since the major part of EEG correlates of spontaneous mental 
processes are allocated in a frequency band not exceeding 70 Hz. 

SL electrodes over 5 cm diameter were not investigated since the conductive rings are made of no-flexible material. 
This prevents its positioning on scalp areas with large curvature. 

In the context of a Brain Computer Interface the use of the SL electrodes improves the quality of the acquired 
nn signaJs while, at the same time, limits the amount of electrodes needed to achieve it. In the case of the Adaptive Brain 

Interface (ABI) project where a battery-driven cap is planned with 8 electrodes, the use of SL electrodes will return 
SL EEG signals as if the number of electrodes were 20 or more. It is also worth notic ing that by using 32 SL electrodes, 
EEG laboratories can work with signals of the same quality as if they were using 64 standard electrodes. 

-

In conclusion, the proposed circular SL electrodes with a diameter of 5 cm return a signal roughly proportional to 
the numerical implementation of the surface Laplacian. Such electrodes could be usefu lly utilized in all the situations 
where the number of recording amplifiers was not sufficient to produce accurate estimates of the surface Laplacian. 
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The Com munication Task 
A corrununication device for the completely paralyzed was develope-d and tested by using an operant learning 

approach for the self-regulation of EEG signals. The procedure was tested in completely and partially locked-in 
patients: partially locked-in patients had rudimentary eye or muscle control, while completely locked-in patients had 
no voluntary function left. The device may prove to be usefu l in other severe communication disorders also because 
it allows to communicate without the language channel (i.e. in autistic syndromes). A detailed description of the device 
and the training procedure can be found in Kilbler et al (1999), the results of two patients with amyotrophic lateral 
sclerosis (ALS) are described in Birbaumer et aJ ( 1999), the language support program is described in Perelmouter et 
al (in press), possible applications in severe communication disorders are discussed in Birbaumer ( 1999). 

EEG components for the thought translation device 
Slow cortical potentials (SCP) are used in the thought translation device to select letters or words from a language 

support program (LSP). Slow cortical potentials are shifts in the depolarization level of the upper cortical dendrites 
which are caused by intracortical and thalamocortical afferent inflow to neocortical layers I and layers n. Negative slow 
cortical potentials are the sum of synchronized ultras low excitatory postsynaptic potentials from the apical dendrites. 
Positive slow cortical potentials are the result of a reduction of synchronized inflow to the apical dendrites or may be 
caused by inhibitory activity or by excitatory outflow from the cell bodies in layer IV and V. Our group has shown 
(Birbaumer et al, 1990) that positive slow cortical potentials lasting from 300 ms to several seconds or minutes arc 
correlated with a disfascilitation of the involved cortical networks. Behavioral and cognitive performance improves 
after subjects or patients have learned to increase the negativity of rhe slow cortical potentials, while cognitive and 
behavioral performance is usually reduced during self-regulation of positive cortical potentials. Over the last 25 years 
our laboratory developed a psychophysiological model of slow cortical potentials and demonstrated in more than 100 
published papers that slow cortical potentials can be instrumentally conditioned. After instrumental conditioning (self­
regulation) of slow cortical potentials the behavioral and cognitive outflow from the involved cortical regions is 
improved or attenuated (see for a summary Birbaumer 1999). S low cortical potentials are u sed for the thought 
translation device, because their neurophysiological basis is well understood, and the rules of the learned acquisition 
of slow cortical potential self-control are wellknown. Since slow cortical potentials indicate the overaJJ preparatory 
excitation level of a cortical network, they are universally present in the human brain : in patients with extensive lesions 
or atrophy of the brain, such as in amyotrophic lateral sclerosis (ALS), slow cortical potentials can be recorded without 
much pathological deviations from most but not all cortical areas. The same is true for all known pathological 
conditions which may be candidates for brain-computer-communication, such as stroke, muscular dystrophies, autistic 
and schizophrenic disorders. In an extensive series of studies with neurological and psychiatric disorders, the 
pathophysiology of the self-regulation of slow cortical potentials was researched by our group and several therapeutic 
applications of the self-regulation of the slow cortical potentials were described, partkularly in untreatable epileptic 
disorders (Rockstroh et aJ J 993, Kotchoubey et al 1997). 

Patients 
In the present report the results of six patients with advanced amyotrophic lateral sclerosis (ALS) is described. One 

patient did not continue training for motivational reasons, after discontinuation of trai ning became depressed and died. 
Another patient who still had rudimentary muscular abilities discontinued training after several months of successfu l 
learning of slow cortical potential control. After a change in the training program he lost control over the slow cortical 
potentials, never regained control and lost moti vatjon. From the three remaining patients two {published in Birbaumer 
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et al 1999) acquired reliable slow cortical potential self-control and are now using the thought-translation-device for 
communication since several months. Both patients are artificially ventilated and artificially fed since more than 4 
years, one has rudimentary control of a small face muscle for about 15 minutes, the other has some rudimentary control 
of eye movements, but only for a short period of time. The sixth patient (L.B.) is completely locked-in since one year, 
artificially fed and respirated, there are no eye movements or any other sign of muscular control. His eyes can be 

opened or closed only with assistance. Movements of the eye baJls are irregular and cannot be used for communication. 
The relatives had not communicated with the patient for eight months. The sensory and mental capabilities of these 
patients is tested with a special sequence of electrophysiological tests developed by Kotchoubey in our group. 

Apparatus and recording 
A detailed description can be found in Kubler et al (1999), here only the most important aspects are mentioned. 

All experiments are taking place at the home of the patients with portable training devices which remain with the 
patients. The patients are lying in bed or sitting in wheelchairs. Conventional 16-channel EEG-amplifiers with a high 
time constant ranging from 3 - 16 s (dependent on the patients response) are used. EEG is recorded from the vertex 
relative to Hnked mastoids at a sampling rate of 256 Hz. Vertical eye movements are simultaneously recorded with 
standard on-line removal of eye movement artifacts. 8 mm Ag/ AgCl-electrodes are fixed with an elefix electrode cream 
with an impctaoce of less than 5 kOhm. Electrodes are fixated with collodium and remain on the patient's head for 
several days before they are cleaned and reattached. Therefore patients have 24-hour access to the thought-translation­
device. Slow cortical potentials are extracted from the regular electroencephalogram on-line, filtered, corrected for eye 
movement artifacts and fed back to the patient with visual or auditory feedback. Visual feedback of the SCP consisted 
of an updated EEG signal (every 64 msec) as a ball-shaped light that moves towards or away from the box which is 
highlighted when the patients had to produce a negativity (upper box) or a positivity (lower box) on a screen. In the 
case of auditory feedback a high or low pitched tone indicates the required SCP polarity and increasing or decreasing 
frequency of the tone provides feedback of the achieved negativHy or positivity. An on-line classification system 
presents reinforcement to the patient by appearance of a smiling face or a melodic sound sequence. Usually the slow 
cortical potential after a 2 s baseline are fed back for another 2 seconds, if the patient achieves the required amplitude 
change reinforcement is provided and a new baseline interval begins. A training day usually consists of 6-12 sessions 
each of which comprised about 70-100 trials which last about 5-10 minutes. Patients are trained if possible on a daily 
basis, most of them received training every second day. Initiation of the baseline period is indicated by a high-pitched 
tone, initiation of the 2s feedback period is initiated by a low-pitched tone. Tones a.re presented in a rhythmic 
succession if necessary for 24 hours. The training procedure follows a shaping schedule in which progressively difficult 
amplitude changes are reinforced according to the past performance of the patients. Response criterion is usually 
increased from 5 to 8 µV. If stable performance of at least 75% correct trials is achieved the patients began to work 
with the language support program (LPS). With the exception of one patient who achieved 75% self-control after a few 
weeks of training only, all other patients had to be trained for several months before they achieved the criterion of75% 
correct trials. 

For the language support program (spelling device) at level 1 the alphabet is split into 2 halves (letter-banks) which 
are presented successively at the bottom of the screen for several seconds. If the subject selects the letter-bank being 
shown by generating a slow cortical potential shift, it is split into 2 new halves and so on, until each of the 2 letter­
banks had only one letter in it. When one of the two final letters was selected, it is displayed on the top text field of the 
screen and a selection begins again at level 1. A "return function" which appeared as an option after two successive 
letter-banks alJows the patient to erase the last symbol written in the text field. Figure 1 shows the accuracy of 
responses during feedback training, copy-spelling and free spelling for 2 patients, the curves are from Birbaumer et al 
1999. Figure 2 gives a full letter written entirely by the brain of patient A in Figure 1. Patients are now switched to 
internet and e-mail, in order to help them communicate with the ALS community world-wide. All patients are video­
documented during training and spelling, selective video sequences can be demonstrated. 

Results 
Figure 1 represents the result of 2 patients, one patient achieved 75% control after several months training but then 

discontinued training because he lost self-control of SCP after a program change. Despite 10 sessions of new training 

he never regained control. One patient with less advanced ALS (N.M.D.) discarded training for several reasons: the 
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trainer made several mistakes during the training procedure, so that the patients received frequently false feedback. In 
addition, the patients w ill 10 live and to change from mask respiration lo respiration through a trachjatomic device was 
lo w. He later refused to continue hls life. Patient S.R. is of Turkish origin and never learned to read and write. He has 
more than 90% contro l of his slow cortical potentials and he is now selecting pictograms symbolizing his wishes and 
desires. The last patient was diagnosed as semi-<.omatic, his eyes have to be opened and closed mecbauil:ally, Lhere was 
no communication possible between family me mbers and the patient for more than 8 months. His mental status 
therefore was completely unclear. With an electrophysiological diagnostic procedure developed by Kotchoubey in our 
group, which presents increasingly complicated stimuli and language material, it was clearly found that the patient is 
fu lly capable of understanding and elaborating incoming auditory and tactile information . Before beginning trnining 
it was considered by doctors and fami ly members to discontinue the lift: of L11t: pacienl. He is now using a auditory 
feedback device and ac hieves more than 60-70% correct responses within a session. However, since his performance 
is not stabile he was not switched to the spelling device. His data will be available at the conference. video of this 
extreme case is also available (in European format). 

The spelling speed in those patients who are now routinely spelling with slow cortical potential control is varying: 
for the Jetter presented in Figure 2, patient HPS needed 16 training days with 8 training sessions consisting of I 00 trials 
each. The first letter ever written with the human EEG published in Birbaumer et al 1999 needed 16 hours at a rate of 
about 2 characters per minute. Communication speed can be considerably improved by presenting words and 
pictograms in the language support program. Despite the improved spelling speed all our patients refused to use pre­
selected word sequences, because they felt Jess free ill selecting and presenting their own intentions and thoughts. 
Therefore all patients with the exception of the Turkish patient are selecting lette rs on a rather slow speed. Since 
completely paralyzed patients have less time pressure, they all fee l satisfied with the achieved communication speed. 

Future plans 
The thought-translation-device has to go on-line, a program which is using aw indows surface is under construction. 

This internet version of the thought-translation-device should allow patients to communicate world-wide with their 
brain activity only. We hope that through this fonn of communication many ALS patients which decide against artificial 
respiration (and therefore d y) continue to live. Our as we ll as others work has shown that quality of life completely 
depends on the possibility to communicate with the social environment. Depression and quality of life scores are not 
different from healthy subjects after a period of half a year adaptation to artific ial respiration. All reported data on life 
expectancy in respirated ALS patients should be interpreted with caution because health and life expectancy of these 
patients depends more on psychological variables influencing the immunological condition then on the course of the 
illness. With appropriate physical care, patients with the thought-translation-device remain psychologically healthy and 
therefore continue their life with a high quality of Life over extended periods. 

We see no need of an invasive procedure such as implanting electrodes in the brain or the skin because 24 hour self­
control of slow cortical potentials and sufficient communication speed can be achieved with the completely non­
invasive thought translation device. Because obviously a minority o f patients do not show sufficient learning speed and 
success, the mai n future task will be the combination of the slow cortical potential thought-translation-device and the 
brain-computer-interface developed by Wolpaw, Vaughan and McFarland (1996) and Donchin 's P300 methodo logy 
(Farwell & Donchin 1988). Also we intend to use some of the ideas presented by the Donchin group in Illinois in order 
to increase communication speed. 

The combined thought-translation-device with the brain-computer-interface by Wolpaw and collaborators will then 
be tested on severe ly retarded and non-communicative autistic d isorders with idio-savant characteristics (such as 
lightning-fast multiplication, eidetic memory, absolute pitch). The rational for this new application is described in 

Birbaumer 1999. 

S upported by the German Research Society (DFG) and the Institut fUr Grenzgebiete der Psychologie. 
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Figure 1 Respon e accuracy of ubjects A and B across e ion . Subject A began w1th feedback training of SCP 
amplitude (initial and advanced training), proceeded to copy peUing (copying of letters and then words) and finally 
to free pelling ( elf- elected letter ). Subject B began with feedback training (initial training), then switched to a 
combination of feedback training and copy sp lling and finally to free spelling. Subject A: orrect elections were 
71.3% for advanced training, 78.7% for copy ·pelling and 66.4% for free spelling. Correct rejection were 75.0% for 
ad anced training, 75.3~ for copy pelli ng and 82.9% for free pelling. For free pelling, correct elections and correct 
reje tions were computed offline. Based on the final content of the sentence the patient had produced, correct and 
incorrect re p n e could be determined. Subject B: Correct election for both advanced training and copy spelling 
were 77.5% re pectively, an for free spelling they amounted to 86.2%; correct rejections were 68.8% for advanced 
training, 67.6% for copy pelling and 73.7% for free spelling. (From Nature 1999) 
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Figure 2 
SEHR-GEEHRTE-FRAU-LAHRTZ-WENN-ICH-DIE-ODER-DEN-RICHTIGEN-BUCHSTABEN-TREFFEN­
WILL.MUSS-ICH-DEN-CURSOR-NACH-UNTEN-BEWEGEN,UND-DAS-VERSUCHE-ICH-DURCH­
ENTSPANNEN-UND-ANSCHLIESSENDEM-ANSPANNEN-DES-GEHIRNS-INNERHALB-EINER­
VORGEGEBENEN-ZEITSPANNE-VON-VIER-EINHALB-SEKUNDEN-ZU-ERREICHEN.-DAS-SCHREIBEN­
lST-NlCHT-SEHR-ANSTRENGEND,ABER-ES-FALLT-MIR-MANCHMAL-SCHWER,MICH-LANGER-ZU­
KONZENTRJEREN.-DAS-WICHTIGSTE-AN-DIESER-NEUEN-MOGLICHKEIT-IST-FUR-MICH-MIT-EINEM­
STUCK-WIEDERGEWONNENER-SELBST .ANDIGKEIT-VERB UNDEN .-ICH-KANN-WIEDER-ALLEJNE­
BRIEFE-SCHREffiEN-.-W AS-DIE-ZEIT-FUR-DIE-BEANTWORTUNG-DER-FRAGEN-BETRIFFT,SO-HABE-ICH­
WIE-A UCH-SONST-D IE-ENTDECKUN G-DER-LAN GSAM KEIT-GEMACHT-.-ES-IST-V IELLEICHT­
VERGLEICHBAR-MIT-EINEM-ERSTKLASSLER,DER-GERADE-DAS-SCHREffiEN-LERNT.-DAMIT-MOCHTE­
ICH-ZUM-SCHLUSS-KOMMEN-UND-SIE-NOCH-DARAUF-HINWEISEN,DASS-DIESER-TEXT-NUR-FUR­
IHREN-ARTIKEL-IN-DER-NZZ-GESCHRIEBEN-WURDE-UND-JEDE-WEITERE-VERWERTUNG-DURCH­
SJE-ODER-DRITI'E-MEINER-VORHERGEHENDEN-EINWILLIGUNG-BEDARF.-MIT-FREUNDLICHEN­
GROSSEN-HANS-PETER-SALZMANN-
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BRAIN COMPUTER INTERFACE RESEARCH AT 

THE NEIL SQUIRE FOUNDATION 

G.E. Birch and S.G. Mason 

Introduction 

The Neil Squire Foundation is a Canadian non-profit organization whose purpose is to create opportunities for 
independence for individuals who have significant physical disabilities. Through direct interaction with these 
individuals the Foundation researches, develops and delivers appropriate innovative services and technology to meet 
their needs. Part of the Research and Development activities of the Foundation, in partnership with the Electrical and 
Computer Engineering Department at the University of British Columbia, have been to explore methods to realize a 
direct Brain-Computer Interface (BCI) for individuals with severe motor-related impairments. The ultimate goal of 
this research is to create an advanced communication interface that will allow an individual with a high-level 
impairment to have effective and sophisticated control of devices such as wheelchairs, robotic assistive appliances, 
computers, and neural prostheses. This type of interface would increase an individual's independence, leading to a 
dramatically improved quality of life and reduced social costs. 

The main focus of our work has been the advanced signal processing of EEG signals. The techniques developed 
to date, the Outlier Processing Method (OPM) and the Low-Frequency Asynchronous Signal Detector (LF-ASD), have 
been design to automatically recognize single-trial, voluntary motor-related potentials (VMRPs) from scalp-recorded 
EEC? signals with reasonable accuracy. 

Overview of Work to Date 

Outlier Processin� Method 
Our initial research effort was focused on developing, evaluating and improving the Outlier Processing Method 

(OPM) [ l) [2] [3] designed to extract single-trial VMRP from EEG. The OPM uses robust, statistical signal processing 
methods to estimate the spontaneous (background) EEG from the one-dimensional observed EEG signal. The single­
trial VMRP is then calculated as the difference between the observed EEG and estimated spontaneous EEG sequences. 
The heart of the OPM algorithm is a robust signal estimator that is used to generate the spontaneous EEG estimate from 
the observed process. This estimator treats the VMRP as a collection of ( correlated) additive outliers and it uses robust 
statistics and time-invariant influence functions to remove these outliers from the observed sequence 

Results from this work on the OPM were promising as hit rates of greater than 90% were achieved on a thumb 
movement task. However, its relatively poor performance on spontaneous, idle EEG (ie. false positive rates ranging 
from 10 to 30%) restricts its use as a BCI to environments where idle EEG is being controlled for by some other 
mechanism. This observation lead to the work described in the following section. 

Low-Frequency Asynchronous Signal Detector 
Our current research effort is primarily focused on developing an effective Asynchronous Signal Detector (ASD). 

Asynchronous signal detection is an essential function of an unsupervised BCI that has generally not been addressed 
by other researchers [4]. This is surprising since commands would be typically issued infrequently in many 

'"' 

.. 

.... 

applications and it is unrealistic to expect the operator to consciously produce do nothing signals continuously at all ... 
other times. Based on extensive exploration of spatiotemporal characteristics [3] we developed an ASD based on new 
movement-related EEG features in the 1-4 Hz frequency band. 
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Figure 1. Components of the Low-Frequency Asynchronous Signal Detector. y( e,n) is the observed 
EEG signal at electrode e and discrete time n. \}J(n) is the feature vector generated by the Feature 
Extractor. zma(n) is the final classification sequence and the sequence, z(n), is the sequence of 

sample-by-sample feature classifications . 

The LF-ASD design [5] [6], shown in Figure 1, was based the feature values defined by (1). 

gij (n)= L W(k)·E; (n+k)·E
j 

(n+k)
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where the elemental (2) features, E; and E;, which where defined by 
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In these formulae, ein) is the ktb observed, bipolar EEG signal (filtered to 1-4 Hz). 

(4) 

In order to increase the robustness of the signal detection to trial-by-trial latency variation, these feature values 
were collapsed into the aggregate features defined by 
where max() represents the maximum. 

(5) 

For our initial studies, a six dimensional feature vector was generated from six electrode pairs F
1
-FC i

, F
2
-FC

2
, F2-

FC2, FC,-C,, FC,-C,., and FCz-Ci positioned over the SMA and Sensory-Motor Cortex. The optimal feature dimensions 
are summarized in Table I. Note that during feature selection, the feature delay values for common electrode pairs ( e.g., 
F;-FCJ were constrained to be equal (as seen in Table I). The aim of this constraint was to generalize the Feature 
Extractor to all types movements instead of optimizing it for our training data. 

The LF-ASD Feature Classifier, using Learning Vector Quantization (LVQ3) [7], performed a sample-by-sample 
classification of each feature vector generated by the Feature Extractor. The output of the State Classification Module 
is denoted by z(n). The classification accuracy was found to improve when the z(n) values were averaged over time. 
We believe the reason for this was that the features vectors were over sampled because the optima] classification rate 
for this new feature set was not known. The result being temporally redundant information in neighboring z(n) values. 51 CX) 
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TABLEI 

OPTIMAL FEATURE DELAYS (128 Hz SAMPLES) 

D Eln) E(n) 
e.dn) a· /3; e.,(n) a; /3; 

f, F,-FC, .J +25 F,-FC, 0 +50 
f, F,-FC. - I +25 F.-FC. 0 +50 
f, F,-FC, • I +25 F,-FC, 0 +50 
f FC -C -1 +15 FC-C -12 +30 
f, FC.-C. - I +15 FC,-C, -12 +30 
r~ FC,-C, .J +15 FC,-C, -12 +30 

The LF-ASD was initially evaJuate.rl on five able-bodied subjects who were tasked with changing the 
direction of the centre ball in the pong style display shown in Figure 2 by executing a non-standard right index 
finger flexion. The subjects worked on a trial-to-trial basis, where the start of each trial was controlled by an 
automated system. Refer to [5][6] for details. 

The LF-ASD demonstrated false positive (FP) error rates of less than 5% and hit rates as high as 78% on 
this asynchronous signal detection task. These error rates were significantly lower than the Outlier Processing 
Method and a mu-rhythm power classification algorithm on the same task. Although feature model parameters 
determined for one subject worked reasonably well on other subjects, performance was found to significantly 
improve by customizing the features. This customization allows the LF-ASD to be optimized for individual 
differences in brain patterns. We also demonstrated that by pairing the LF-ASD with other BCI techniques, 

we could significantly lower the FP rate of OPM and a mu-rhythm based classifier [5] [6]. 

Figure 2. Experimental display 

On-Line Implementation of the LF-ASD 
Our most recent study implemented an on-line version of LF-ASD [8]. In this system, EEG was continually 

classified for the same control task defined above. The only time the subjects were not controlling the display was 
when a monitoring system detected ocular artifact. 

The on-line system was tested on two right handed male subjects who each participated in three sessions [8). 
During each session, the ASD was trained on 25 (artifact-free) movements and tested on 75 movements during the 
operating phase. The LF-ASD continuously monitored and classified the EEG and the subject received visual feedback 
one second after a detected movement or if a false positive occurred. The on-line performance with the two new 

subjects demonstrated hit rates in the range of 50% whi le maintaining FPs to a very low level (for subject 1: between 
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1-2% and for subject 2 between 3-6% for first two sessions and 10% for the last session). In terms of overall correct 
decisions, given that the system was making an idle or active classification every 1/8 of a second, the average 
pe1formance over both subjects and all three sessions was over 95%. The results also indicated that subject training 
can occur rapidly as the number of hits approximately doubled for each subject in the second session. In addition, these 
results were all obtained using a feature model based on a prior subject. Based on the indications to date we would 
expect the performance to improve significantly with customization and further subject training . 

It was interesting to note that in this on-line study, both subjects reported that many of their false positives were 
detected when they thought about making a movement but did not execute one. This appeared to happen far too often 
to be due to chance, but we have not yet had the opportunity to investigate this phenomenon any further. However, it 
provides some very preliminary evidence that it may be possible to activate our ASD simply by planning a movement. 
This observation is also consistent with the recent work by Pfurtscheller where their subjects used only imagined 
movements [9]. Given the promising results that we have obtained to date with able-bodied subjects, we are now in the 
early stages of developing a methodology to test our approach on persons with a high level spinal cord injury. 

Future Work 
The introduction of the LF-ASD provides the first step towards a critically needed component of unsupervised 

BCls. Our current research plan has five stages. 

Stage 1 - Test the following hypothesis: Individuals with a spinal cord injury (SCI) can control our existing 
techniques as well as able-bodied individuals. 

Stage 2 - Develop methods that will automatically customize the BCI to a subject during a training period . We 
hypothesize that this is possible based on our ability to manually adjust the ASD system model for able­
bodied subjects. 

Stage 3 - Test the fo llowing hypothesis: With training, subjects with a SCI can learn to control our BCI 
techniques to the same degree as able-bodied subjects. 

Stage 4 - Test the fo llowing hypothesis: Our ASD method can reliably discriminate idle state from multiple 
control states. 

Stage 5 - Test the following hypothesis: The statistical characteristics of atte ntive idle EEG is significantly 
different from those of non-attentive idle EEG for both LF-ASD features and mu-power features. 
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ROBOTIC CONTROL FROM REALTIME TRANSFORMATION OF 
MULTI-NEURONAL POPULATION VECTORS 

J. K. Chapin and G. Gaal 
Department of Anatomy and Neurobiology, Hahnemann University 

To investigate the possibility of controlling robotic devices from brain-derived neural population vectors, up to 
46 neurons were simultaneously recorded in the forelimb motor cortex, ventrolateral thalamus and/or cerebellum of 
eight rats trained to obtain water by moving a bar to position a robot arm under a water dropper. These neuronal signals 
were then electronically weighted and integrated into a realtime brain-derived signal whose timing approximated the 
onset of bar pressing movement. In recording experiments, control of the robot arm was suddenly switched from the 
bar press to the brain-derjved signal. Four rats successfully used this signal to position the robot arm and obtain water 
rewards. Over continued training using the brain-derived signal to control the robot arm, the bar-pressing movements 
steadily diminished or changed their character, indicating a dissociation from the forelimb movements they originally 
encoded. Various mathematical techniques were investigated to further improve the selectivity and temporal resolution 
of these brain-derived population vectors. Discriminant analysis was used to derive selective linear weighting functions 
that successfully encoded limb flexion and extension in multiple dimensions . Moreover, artificial neural networks were 
used to transform the normally phasic brain-derived signals into control signals that successfuJJy replicated the timing 
and magnjtude of whole limb movements. Thus, brain-derived signals can be used as direct surrogates for operant 
movements, or with further training, to ultimately replace such movements. Such signals might be therefore be useful 
for controlling prosthetic devices. 
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THE MENTAL PROSTHESIS: ASSESSING THE SPEED OF A P300-BASED 
BRAIN-COMPUTER INTERFACE 

K. M. Spencer, 0 . Kami, R. Wijesinghe, and E. Donchin 
Department of Psychology and Beckman Institute, University of Illinois at Urbana-Champaign 

(Presented at the Society of Psychophysiological Research, 1998, Denver, Co.) 

Introduction 
Farwell and Donchin (1988) described a Brain Computer Interface (BCI; Vaughan, Wolpaw, & Donchin, 1996) 

that exploited the properties of the oddba)J paradigm to allow a user to communicate a sequence of letters to a computer 
by observing a continually displayed matrix of characters (Figure 1), and focusing attention successively on the 
characters to be communicated . 

A G M s y * 

B H N T z * 

C 0 u * TALK 

D J p V FLN SPAC 

E K Q w * BKSP 

F L R X SPL QUIT 

Figure I Display presented to the subject. The 
rows and columns of the matrix are intensified 
in a random sequence for 100 msec. 

Tim, Courst of Ennt1, 125 m1tc ISi 

--- ----1245(1Tl)------ -.i 

-------,...,~. (,..k ('1• 1n I . ----.------, ; -------
h dllll~ MntlU 
tllt tNt l ol a lOO •ttc 
W lylit o,oc, ('1wkltf') 

- - - tOO---+ -· -------,,..._. , 
----eoo---

Fig 2. Sequence of events in a trial (From Farwell 
and Donchin, 1998). 

An oddball sequence was produced by intensifying, in a random sequence, each of the 6 rows and 6 columns of the 
matrix. Each intensification lasted 100 ms, with and SOA of 125ms. The interval between trials (6 row and 6 column 

- intensifications) was 1500ms. (See Fig. 2 for details.) 

-
-
liiii 

Farwell and Donchin hypothesized that the rows and columns that contain the character to which the subject is 
attending will constitute a distinct category among the stimuli and, being rare, will elicit a P300. 

The BCI used the following procedure: 
1. Obtain a 600 ms record of the EEG following each of the intensifications. 
2. Compute the ERP associated with each row and with each column. 
3. Intensifications of the row and column contain ing the target character elicit easily detectable P300s. 
4. No P300s are elicited by the intensifications of rows and columns that do not contain the target. 

The P300 was easy to detect when the data associated with 40 trials were averaged. Thus, 100% correct 
communication can be achieved if enough time is allocated for each character. Naturally, a practical BCI should 
provide faster communication. The speed depends on the number of trials required for an accurate detection of the 
P300 (see Table 1). 
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N trials 1 2 4 5 16 32 

Communication rate 40 20 10 5 2.5 1.25 
Items per minute) 

The Current Study 
Under the circumstances of the system used by Farwell and Donchin (1988), tbe system was able to operate at 

maximum rate of about 8-10 characters per minute. While under some circumstances this is an acceptable rate, it was 

our goal to capitalize on the increased computational power currently available to determine if we can improve the rate 
of transmission. The current BCI was implemented in a Wintel system, using a Gateway 2000 PC. 

Methods 
Subjects 

A B C D E F 

G H J K L 

M N O P Q R 

S T U V W X 

V Z 1 2 3 4 

5 6 7 8 g sPACE 

Figure 3. Revised version of display. Note 
the elimination of the replacement of 
operating codes with the nine digits. 

IO able-bodied (6 female) and 4 disabled subjects (wheelchair-bound; 3 with complete paraplegia, l incomplete 
paraplegia; 2 female) from the university community participated in the experiment. 

Stimuli and Procedure 
1. Stimuli and procedures were the same as in Farwell and Donchin (1988; see Introduction). 
2. A modified version of the display was used (Fig. 3). · 
3. A trial is a sequence of 6 row and 6 column intensifications. 
4. Inter-trial interval was 2500 ms (1500 ms+ 1000 ms pause, inserted for technical reasons). 
5. Subjects were instructed to count the number of times the row or column containing the target letter "P" was 

intensified. 
6. P(Target) = 2/12 = 0.167 
7. Each subject performed 5 blocks of 15 trials each. 

Data Acquisition and Processing 
I. EEG was recorded with Biologic amplifiers (0.01 - 100 Hz passband, 200 Hz digitization). 
2. Electrode sites were Fz, Cz, Pz, 01, 02, and right mastoid, referenced to left mastoid, re-referenced off-line to 

averaged mastoids. 
3. Vertical and horizontal EOG artifacts were removed from the EEG by an eye-movement correction method. 
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Single-trial epochs for each cell of the display matrix were derived by averaging together each combination of row 
and column si ngle-trial epochs. Thus, there were 6 rows X 6 columns= 36 epochs for each trial. 

Grand Average ERPs 
As can be seen in Fig. 4, the targets elicit a large P300. The ERPs for "Target Letter" were associated with the cell 

at the intersection of the correct row and correct column. The ERPs for ''Target Row/Column" were associated with 
the cells at the intersection of the correct row or column, and an incorrect column or row. respectively 

Able-Bodied Disabled 
Fz Fz 

,, 
. - \ .. , .. , ' 

-50 

_ Target Letter (P) 
Cz 0 Cz, ,, ,' ' , \ , 

Al "- ' 
., 

so ...... Target Row/Column 

D 
u. 100 

- - Standards 

150 
· 100 0 10020030040050:) 

ms 

Pz 

Fig.4 

Bootstrap AnaJyses 
Stepwise discriminant analysis (SWDA) was app}jed to a data set constructed by bootstrapping to assess the 

accuracy with which the target cell was detected as a function of the number of trials used for averaging. This 
procedure was applied with two pre-processing methods: 
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I. SWDA: Single-trial cell epochs were filtered at 0-8 Hz and resampled at 50 Hz, yielding 30 timepoints for the 

0-600 ms period of each epoch. 
2. SWDA/DWT: Single-trial cell epochs were filtered at 0-50 Hz and resampled at 50 Hz, yielding 32 time points 

for the 0-640 ms period. These timepoints were converted to wavelet coefficients with the Discrete Wavelet 
Transform (DWT). 

Bootstrapping Procedure 
To assess the accuracy given N trials (see Table 1), repeat the following procedure 1000 times: 
1. Obtain a random sample of N trials for each cell by sampling w/replacement from the set of 7 5 trials. 

2. Compute the average of N trials for each cell. 
3. Apply SWDA to the set of cell averages. 
4. Compute the discriminant score for each cell . 
5. Select the cell with the maximum discriminant score. 
6. If the selected cell is the defined target cell, count a hit, otherwise count a miss. 

When done, record the percentage of hits among the 1000 samplings. This is the percent accuracy at the 
communication speed determined by the N trials. 

(These values assume that the BCI can proceed with no delay between trials. In the current implementation of the 
BCI, technical considerations dictated a 1000 ms pause between trials.) 

Table2 

Subject 
Able­
Bodied 

Disabled 

Pre-processing 
SWDA 

SWDA/DWT 

SWDA 

SWDAffiWT 

Able-Bodied Subjects 

Accuracy Level 

80% 95% 
6.3 items/min 3.4 items/min 

7 .8 items/min 4.3 items/min 

4.8 items/min 2.8 items/min 

5.9 items/min 3,2 items/min 

Disabled Subjects 

Percent 60 ---~--------l 
Cor rect 

40 2 10 5 2. 1.25 40 2 1 5 2.5 1.25 

Communication Rate {Items/Minute) 

---swoA ---swDNDWT 
Figure S: Faster communication rates were obtained with the Able-Bodied subjects than with 
the Disabled subjects. Furthermore, the SWDA/DWT pre-processing method produced 
somewhat faster communication rates than the SWDA method. (See Fig. 5 and Table 2.) 
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Five of the IO able-bodied subjecls participaled in a test of the ability of the BCI to detect characters online and 
in real time. 

Each subject was run first in the bootstrap analyses to calibrate the BCI (see above). In the online test, each subject 
selected successively 5 individual characters. Using discriminant scores based on the number of trials required to reach 
90% accuracy in the SWDA analysis, the BCI selected a character which appeared to match the character selected by 
the subject. The logical flow is presented below (Fig. 6): 

Figure 6 

On-Line, Real Time, 
Implementation of BCI 

1. OfUine Preparations 

Run SWDA 
OS= 

Discriminant 
Score 

Conduct Off-line 
Bootstrapping 1-------' 

Analysis 

2. On line ewnts per test 

Run BCI Disp lay 
for OnllneN ,_,_ __ __. 

Trials 

Set OnUne • 
N\.Wllber of trials 

neededto 
achlew 90% 

ac,curac 

Subject Selects 
letter • CHAR 

• 
CHAR.FOUND= 
cell assigned 

Max (OS} 

Compute 
'-----1 discriminat score 
.-----1 for each of the 36 

cells 
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Record EEG for 
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Online Test Results 
Averaging the number of trials that produced 90% accuracy in the SWDA analysis for the online test, the BCI 

identified the cell to which the subject was attending 56% of the time. On 36% of the cells, the BCI chose the correct 
row or column. For only 8% of the cells the BCI chose incorrect row/column combinations. (See Table 3.) 

Correct Cell Correct Incorrect Cell 
Row/Column 

56% 36% 8% 
Table3 

Conclusions 

We confirm the report by Farwell and Donchin (1988) that it is possible to construct a Brain Computer Interface 
that, using the P300, allows an individual to operate a virtual keyboard without using or requiring any activation of 
skeletal muscles. 

The speed of the BCI used in this study is substantially faster than that used by Farwell and Donchin. The factors 
accounting for the speedier action are: 

1. Improved SWDA algorithms in commercially available packages. 
2. The use of the Discrete Wavelet Transform. 
3. The application of the Discriminant function to the 36 individual cells. 

The current study also tested the feasibility of the P300 based BCI with wheel-chair bound individuals with 

encouraging results. 

Assessment 
lo evaluating the speed of the P300-based BCI it is important'to recall that the device is intended for use by 

individuals who are completely disabled. As a base of comparison one needs to use the communication method used 
by Bauby (1997), a "locked-in" patient, to write his book, "The Diving-Bell and the Butterfly". 
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REAL-TIME CONTROL OF A CORTICAL NEURAL PROTHESIS 
R.E. Isaacs1

, D.J. Weber1, A.B. Schwartz1.2 
1Chemical, Bio, and Materials Engineering, Arizona State University 

2Neurosciences Institute 

Brain Computer Interfaces primarily use non-invasive devjces - EEG-based methods - to interact with the central 
nervous system. Since the 1960's, with the development of the phrenic nerve stimulator, implantable devices that 
interact with the peripheral nervous system have been widely accepted. More recently, as signified by the FDA 
approval of a deep brain stimulator for movement disorders, interest has shifted towards direct communication with 
the brain. Research being conducted at Arizona State University, as a part of the NIH's Neural Prosthesis Program, is 
developing a cortical motor prosthesis. The goal is to design a system to record and analyze the activity of neurons in 
the motor cortex, and implement this as a control system for a robotic arm. One potential benefit of this type of system 
includes a more accurate and versatile means of manipulating an artificial limb. We have demonstrated, in an initial 
step, the feasibility of this approach. 

Neurons in the cerebral cortex typically display broad cosine tuning, and those in the motor cortex have been shown 
to be broadly tuned to the direction of hand movement. These neurons will fire most rapidly for movements in their 
'preferred direction', and least when movements are in the opposite direction. Knowing the parameters that describe 
a given neuron, very little information about of the action of the hand can be derived . When analyzed as a population, 
using a population vector or pattern recognition, a reconstruction with a high corre lation to the true instantaneous 
velocity of the hand can be formed. The foundation of this work has been established using single-unit recording 
techniques; the same level of accuracy has yet to be proven in real-time using multi-unit recording. Technological 
advances are improving the ability to record and process the activity of multiple cells simultaneously. Concomitant with 
this, analytic techniques designed to extract information inherent in simultaneous recordings are making it possible to 
extract the information encoded in the neural signal with fewer numbers of cells. With thi s, we are progressing towards 
the goal of online robotic control. 

When a large number of neurons is present, a vector sum of weighted preferred directions (a population vector) 
should well describe the task being performed. With fewer, relatively noisy cells, pattern recognition can provide a 

• better estimation of the information present in the cortical signal. A new method is being developed to use a principal 
component analysis (PCA) to find the patterns of co-activation that can identify the ensemble activity throughout each 
movement. To do this, the cross-covariance of each neuron' s activity with one another is calculated. After performing 

- the PCA, the eigenvectors of the covariance matrix illustrate the patterns that best identify the group activity at any 
given moment. Once new cortical activity is related to known movements, an instantaneous velocity can be assigned. 

-

Rhesus monkeys, implanted with chronic electrode arrays, were trained to perform a 3D center-out reaching task 
in a cubic workspace. Normalized neural activity from over 30 task-related, simultaneously recorded neurons was 
grouped to find the temporal patterns of co-activation. A PCA was employed to define these patterns and reduce the 
data to a handful of unique identifiers. This constituted the calibration process. Every 20ms, a sliding window of 
activity from al l of the neurons was multiplied by the previously derived eigenvectors. This new set was compared with 
the training data in principal component space. The instantaneous velocity from the training data set to which the new 
data most closely matched was assigned for that time instant. No velocity was given if the pattern matched a point in 
time not associated with movement. Adding these velocities tip-to-tail formed the trajectory. 

The system used to access the neural activity and the chronic electrode arrays were available commercially. 
Recordings from each microwire in the electrode assembly (NB Labs, Denison, TX) were obtained using a JFET buffer 
amplifier that connects to a multi-channel neural recording system (Plexon lnc., Dallas, TX). The recording system 
provided channel-selectable, variable gains (up to 30,000x) and bandpass filtering (50-12,000 Hz), before sampling 
each channel at 40,000 samples/sec. On-line spike discrimination was controlled interactive ly by the investigator by 

applying standard techniques to isolate the neural activity from the background noise. The system saved spike 
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waveforms and timestamps for all of the channels simultaneously, and can be accessed in real-time using client 
programs. This architecture has been extended to include online analysis of the cortical signal and will eventually be 

used to drive the robotic arm. 

Using the system described above, client programs can be written which can make the necessary calculations to 
relate the neural activity to a control signaJ at 50 Hz. To run a robotic arm, an on-off signal, direction, and speed must 
be derived at every instant in time, and can be related back to the original arm movement for comparison . Over a two­
month time period, the system correctly predicted when the hand was in motion over 80% of the time - with the most 
consistent errors occurring at the beginning and end of the movements. Comparing the angle formed between the true 
and the derived movements, a daily average angle ranged from less than 33 degrees to over 60 degrees. Endpoint 
prediction, being dependent on the prediction of movement onset, termination, and the instantaneous velocity at each 
movement interval, varied more substantially. The average displacement difference from the best day was 
approximately four cm off from the true endpoint, which lies 10 cm from the center of the cube. 

Research is being directed at the formation of a real-time control signal to drive a cortical motor prosthesis. 
Although the accuracy of the current system is limited, it does provide three-dimensional motion control, deriving 
direction, speed, and movement initiation and termination, from the firing activity of motor neurons. Using the system 
described above, the conversion from neuronal activity to movement on a millisecond time-scale is attainable . Visual 
feedback should allow for learning and cortical remodeling. Once the animal is allowed to interact with the robotic 
arm as the task is being performed, we expect that the ability to control this device should improve. Therefore, further 
refinements in technology coupled with the addition of biofeedback should aid us in accomplishing our goal of an 
implantable, intracortical BCI. 
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PROPOSED PRESENTATION/DEMONSTRATION OF THE 
CYBERLINK™ CONTROL SYSTEM 

A. M. Junker, Ph.D. 
Brain Actuated Technologies Inc . 

The Cyberlink ™ System is controlled by the bio-potentials found on the surface of the forehead. The Cyberlink TM 
system combines eye-movement, facial muscle, and brain wave bio-potentials detected at the user's forehead to 
generate computer inputs that can be used for a variety of tasks and recreations . 

The forehead is a convenient, non-invasive measuring site rich in a variety of bio-potentials. Three different 
channels of control signals are derived from the forehead signals by the Cyberlink™ Interface. The lowest frequency 
channel is particularly responsive to eye movements thus we call it an EOG signal. This EOG signal is typically used 
to detect left and right eye motion. This signal can be mapped to left and right cursor motion or on/off switch control. 

A second channel of information is band pass derived ( I -50 Hz). The Cyberlink™ software further subdivides 
this region into ten component frequency bands called 'Brainfingers™'. These frequencies reflect internal 
mental/brain-wave activity as well as subtle facial muscle activity. A wide range of facial musc les affect these 
frequency bands. Users typically learn control of their Brainfingers™ first through subtle tensing and relaxing of 
various muscles including forehead, eye and jaw muscles. After a little experience with the CyberlinkTM System, most 
users begin to experiment with more efficient, internal brain-based control methods. Since this frequency region is 
sensitive to both mental and muscular signals it is called the 'Brain-Body' signal. 

BrainfingerTM control is continuous or analog and is typically used for such things as control of cursor vertical or 
horizontal movement. For example, one Brainfinger™ may be used to control vertical movement while a second 
Brainfinger™ (or other signal channel) is used to control horizontal movement. 

A third channel is an EMG envelope detected signal (70-3000 Hz) which primarily reflects fac ial muscle activity . 
It is typically used in the Cyberlink™ System for discrete on/off control of program commands, switch closures, 
keyboard commands, and the functions of the left and right mouse buttons. It can also be used nicely for analog cursor 
control. 

Specific facial and eye movement gestures can be discriminated by the Cyberlink™ software and mapped to 
separate mouse, keyboard, and program functions . 

Continuous and discrete control capabilities have been incorporated into a Win 95/98 mouse driver. This hands­
free mouse enables the user to steer the cursor, change its speed and resolution, pe rform left and right mouse button 
functions, and send keyboard characters and character string commands. This makes hands-free two-axis control 
possible not only with Cyberlink™ specific games and applications, but also with third-party software such as Gus, 
Words Plus EZ Keys, WiViK2 and Clicker Plus. 

For individuals with limited control of their facial muscles, the Cyberlink TM software can be formatted to use Brain­
Body or EOG inputs (instead of EMG) to activate switch closures and mouse button clicks. 

The use of the Cyberlink™ system with a computer will be demonstrated. The presentation will demonstrate how 
the training software helps the user to learn to control the computer through the biofeedback paradigm provided in the 
venue of on screen visual presentations of the users brain and body signals and video games such as Pong and Tetris. 
This training facilitates the development of precursor skills for the higher level skills needed for written and voice 
output communication of the Internet and other third party applications using windows 95/98. A demonstration of the 
music generation program, on screen keyboards and other more advanced applications will give the audience the sense 
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of the wide range of potential for this Cyberlink TM interface brain actuated technology. It is hoped that the audience 
will see ways to adopt and apply techniques that we have developed for the Cyberlink system to their BCI applications. 
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DIRECT CONTROL OF A COMPUTER FROM THE HUMAN CENTRAL 
NERVOUS SYSTEM 

P.R. Kennedy, MD, Ph.D. [1,2], K. Adams MSEE [3], R.A.E. Bakay, MD [2), J . Goldthwaite MSEE (31, 
G. Montgomery BSCS (3), M. Moore, Ph.D. [4]. 

(1) Neural Signals Inc., [2] Emory University, 
[3] Georgia Institute of Technology, [4] Georgia State University 

Introduction 
Patients with Jocked-in syndrome are alert and cognitively intact but cannot move or speak. They face a life-long 

challenge to communicate. They may use eye movements, blinks or remnants of muscle movements to indicate binary 
yes or no signals. To enhance communication for these patients several devices have been developed including EEG 
control of a computer. These systems can provide these patients with the ability to spell words as shown by Niels 
Birbaumer and his colleagues in thi s volume (also, Kubler et al 1999), and control of hand opening and closing as 
shown by Peckham and his colleagues in this volume. 1n theory, however, none of these systems can produce the speed 
and precision that ought to be provided by directly recording neural activity from the human cortex . 

Our approach is to use trophic factors to encourage growth of neural tissue into the hollow tip of a two-wire 
electrode (Kennedy 1989). The neural tissue is he ld firmly within the tip because it grows through both ends and joins 
with neighboring neuropil. This has provided stable long-term recordings in the rat and monkey for up to sixteen 
months (Kennedy et al, 1992a. 1992b) and in the patient described below for over a year. The histology shows normal 
neuropil without neurons but with an abundance of myelinated axons. The same action potentials are recorded over 
long time periods and behavioral correlates are described (Kennedy et al, 1992, 1997). Recently, this same type of 
electrode has been implanted into two patients. The first patient was an ALS patient who died 76 days after 
implantation from her underlying disease. She showed that stable signals could be recorded and she could turn them 
on and off (Kennedy et al, 1998). The results in the second patient demonstrate the ability of this electrode to provide 
long-term stable signals that can be separated from the multi-unit activity. The patient can control these signals to some 
extent and is able to use them to dri ve a cursor across a computer screen. The rate of movement of the cursor is 
proportional to the firing rate. He has provided learning curves whereby his performance improves with repeated 
execution of the same task. The focus of this paper is the performance of the patient using neural activity to drive the 
cursor. 

Methods 
Implantation: Electrode fabrication and implantation are described in Kennedy '89, Kennedy, Bakay and Sharpe 

92 and Kennedy and Bakay '98. Two recording wires are placed in the glass conical tip and two neurotrophic 
electrodes are implanted using full general anesthesia and standard sterile protocols. As described in the recent paper 
on the first patient (Kennedy & Bakay '98), a functional MRI is performed to determine the localization of neural 
activity. These fMRI results guide selection of the implantation site (Olsen et al, 1997). A craniotomy is performed 
over area 4 motor cortex, and two electrodes are implanted, one over the digit/hand area and the other near the face area 
identified at surgery by alignment with the active area noted on the pre-operative functional MRI. The implanted device 
is coated with Elvax for insulation against fluid leak. Elvax is an ethylene-vinyl acetate copolymer resin from DuPont 
de Nemours, Wilmington, DE. For mechanical insulation, the Elvax is coated with bio-compatible silastic (R-1144 
RTV Dispersion coating, Silicone Technology Inc., McGhan Nucil Corp., Carpenteria, CA). The device is held in place 
using acrylic cement and standard neurosurgical techniques. These devices have been used in animal experiments 
without any problems attributable to the devices. 

Recording: Recording techniques are summarized here and described in detail in the papers in Kennedy '89 and 
Kennedy, Bakay and Sharpe '92 Kennedy & Bakay '98. The electrode routinely has two wires spaced 0.5 mm apart, 
one about 0.5 mm from the deep end of the cone and the other about 0.5 mm from the wide superficial end. Differential 
recording (without ground) using both wires offers a number of advantage. (1) It excludes the possibility of recording 
from tissue outside either end of the cone (for an example, see figure 3 of Kennedy '89), and (2) it minimizes artifacts 
such as scalp muscle EMG. A simple telemetry system allows complete skin closure thus minimizing the risk of 
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infection (and unsightly wires comjng through the scalp). The radio telemetry system consists of a custom FM 
transmhter and a modified commercial FM receiver (Mackay, 1970; Motchenbacher and Fitchen, 1973). The 
transmitter is constructed with surf ace-mount components. During data acquisition, the patient is lying in bed and the 
power induction coil is held between the pillow and his head. The antenna of the FM telemetry receiver is placed 
within inches of his head. Transmission frequency ranges from 34 to 44 MHz, bandwidth of the transmitter extends 
from near 0.1 to 5 KHz (the 3-db point), and the filter cutoffs of the post-transmitter amplifier (BMA 83 1, CWE Inc.) 
are set at 0.5 and 5 KHz. The total system gain is 20,000. The neural data is archived on an 8-mm digital video tape 
(Sony recorder EV-S350) whose band~idth is DC to 12.5 KHz in the PCM mode, with signal amplitude ranging from 
10 mV to 1.25 V. The neural signals are recorded in synch with the video signal from the camera that monitors the 
patient and the computer screen. To drive the cursor, all wavcshapes are usually fed back as a group. 

Signal Processing: The analog output of each electrode is routed to the computer containing signal separation 
software (Discovery Software, Data Wave Technology Inc., Boulder CO.). Neural spikes (waveshapes) that exceed a 
user-determined voltage level are digitized at a user-determined frequency, typically 16 or 32 KHz. When digitizing 
waveshapes, the user can allow some overlap of waveshapes within the I ms time bins so that rapidly recurring 
waveshapes are minimally missed. Eight different parameters are used: 1) peak to peak amplitude, 2) amplitude above 
baseline, 3) amplitude below baseline, 4) width, 5) time to peak, 6) time to valley and 7) user selected sample points 
at point 2 (of the 32), and 8) at point 20. Waveshapes must fall within 1 standard deviation of the waveshape average, 
thus excluding points outside these values. In addition, only a minimal section of the waveshape (determined by the 
user) needs to be included in the anaJysis, thus saving real time on-line processing time. The eight separation 
parameters are stored in a dedicated set-up parameter file and used for classifying waveshapes at subsequent recording 
sessions, or for retrospective off-line analysis from the videotape. 

Cursor Control: Each waveshape is converted into a TIL pulse. When EMG signals are substituted for neural 
signals (see below) these aJso are converted into TTL pulses. Three pulse outputs are routed to a second computer as 
a substitute for the "mouse" input. During normaJ "mouse" operation, the position of the cursor on the screen is a 
function of the X and Y voltage input. The signals from one pulse determine the position of the cursor in the X 
direction, the other in the Y direction. The rate of increase of firing determines the velocity at which the cursor moves 
over the screen. The third pulse is used to trigger the "enter" or "select" command or "mouse click". To simplify 
operation for the patient, we have differentiated the firing rate and removed the hysteresis. In other words, only 
increases in firing rate move the cursor from left to right. With decreases in firing rate or with any sustained tonic firing 
rate it does not move. Furthermore, when the "enter" command is activated, the cursor immediately returns to the top 
left position on the screen. The patient receives visual feedback by observing the rate of cursor movement. Auditory 
feedback is provided by a brief tone that is distinct for any pulse that fires. Early in training, there was a dwell time 
that required the patient to remain over an icon for two seconds before activatio n. 

Patient Training: The monitor is attached to a computer containing software that displays either a row of icons 
representing common phrases (Talk Assist developed at Georgia Tech), or a standard 'qwerty' or alphabetical keyboard 
(Wivik software from Prentke Romich Co.). When using the keyboard, the selected letter appears on a Microsoft 
Wordpad screen. When the phrase or sentence is complete, it is outputted as speech (using Wivox software from 
Prentke Romich Co.) or printed text. There are two paradigms using the Talk Assist program and a third one using the 
visual keyboard. In the first paradigm, the cursor moves across the screen using one group of neural signals and down 
the screen using another group of larger amplitude signals. Starting in the top left comer, the patient enters the nearest 
(or leftmost) icon. He remains over the icon for two seconds so that lhe speech synthesizer is activated and phrases 
are outputted such as "See you Jater. Nice talking with you". In the second paradigm, the patient is expected to move 
the cursor across the screen from one icon to the other. The patient is encouraged to be as accurate as possible, and 
then to speed up the cursor movement while attempting to remain accurate. In the third paradigm, a visual keyboard 
is presented on the monitor and the patient is encouraged to spell his name as accurately and quickly as possible and 
then spell anything else he wishes. 
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Results 
Our first implanted patient, MH, was able to control multiunit firing using visual and auditory feedback (Kennedy 

and Bakay, 1998). Recording signals until her death 76 days post implantation demonstrated that growth of neural 
tissue into the electrode could occur in humans. She could turn the signals on and off on request, thus demonstrating 
that binary output is feasible. Our second patient, JR, continues to control a computer cursor over a year after 
implantation. He suffered a brainstem stroke in December 1997. He has residual facial expressions, cannot speak 
around his tracheotomy, has disconjugate eye movements with nystagmus, but is cognitively intact and fully alert. 
Neural signals appeared as expected (from the first patient and in all animal studies) near day twenty, and stabilized 
at about three months. Robust signals continue at day 426 at time of writing. Multiple signals of different amplitudes 
can be recorded unless JR is tired, toxic or on analgesics. Presently he is given Neurontin and Fentanyl for pain 
associated with severe decubitus ulcers and peripheral neuropathy so he works with great difficulty and for short 
periods of time. At month two after implantation, the neural signals fired in relation to mouth and tongue movements. 
At month four they appeared to fire with eye and eyebrow movements as determined by observing the patient during 
activation and by questioning him. From month five onwards, JR makes no movements during activation of the signals. 
He has learned to use these neural signals to control the X direction of a cursor on a computer screen. Initial attempts 
produced poorly controlled movements of the cursor because no tonic firing occurred at any firing rate level. Only 
phasic bursts occurred that sometimes continued as runaway firings. To negate this unwanted constant rate, we 
continuously averaged the firing rate and subtracted this from the actual rate: When rates were equal, the cursor did 
not move. Thus, it now moves only in response to increases in phasic activity. We initially allowed the cursor to drift 
back in the opposite direction in order to provide bi-directional movement, but this was too difficult for him to control. 
Now the cursor does not drift to the left, nor does it move with decreases in firing rate. It wraps around the screen when 
it reaches the right side. With these simplifications he has produced learning curves with all three paradigms. 

Paradi~m #1. 
In the first paradigm, he moved the cursor across and down the screen to activate icons to produce synthetic speech. 

Panel A in figure 1 illustrates improvement in performance during three different sessions on days 120, 121 and 122 
after implantation. He attempted to move from a start position on the top left comer of the screen, and drove the cursor 
across to the right and downwards to enter one of five icons in a row scored one through 16. A high score indicates 
poor performance and a low score indicates rapid movement down into the icon nearest the start position. As 
illustrated, poor performance (shown in the Y-axis) on the initial trials improved on subsequent trials. 

This performance did not endure, however, when JR was tired or toxic. This is shown in panel B where scores 
worsened as he became tired (day 120), remained poor (day I 21) or fluctuated (day 122). On questioning he indicated 
his sense of effort was maximal. 

In panel C, JR used the neural signals for the X direction and the toe EMG (Adductor Hallucis muscle) for the Y 
direction. He moved the cursor around the screen containing five icons in a horizontal row with the fourth icon from 
the left being the target icon. Thus a score of four indicated accurate attainment of the target. There was no time limit. 
The cursor could move from left to right and top to bottom and then wrap around to the top or left side. Initially, he 
was inaccurate for six trials and then maintained consistent accuracy for four trials (scores 4) until he tired and became 
inaccurate. He was seen to be slowing, so he was asked whether or not he wished to continue. He indicated "no" by 
one blink ("yes" by two). He was rested for 3 minutes and on resumption he regained accuracy for two trials. A rest 
of five minutes produced five accurate trials in a row. · A short rest resulted in resumption of inaccurate trials. A five 
minute rest produced three more accurate trials followed by an inaccurate one and an indication that be was too tired 
and wished to stop . 

Paradi&m #2. 
In the second paradigm he moved across each of five icons as accurately and quickJy as possible. To be accurate 

he had to move the cursor into an icon and remain there for two seconds to produce synthetic speech. This was 
accurately performed in 45 seconds on the first trial as shown in panel D. Speed of performance increased over five 
trials. On the sixth and seventh trials, errors in accuracy occurred. He was encouraged to slow down while maintaining 
accuracy. This he did. As he increased his speed, further errors occurred. At the end, he indicated effort was maximal. 
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A: Learning Curve I 
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JR has useo a pop-up keyboard on the monitor to select letters and spell phrases that are outputted either as 
synthetic speech or printed words. He has spelled his name and ours with accuracy, but has become increasingly unable 
to generate neural signals for more than a few minutes due to the effects of the analgesics described above. To facilitate 
his use of the keyboard, we used EMG signals that were associated with some minute recovered movements of his left 
neck, arm or toe, though recently even these have not been available. We used neck EMG for the sel~ct command and 
left toe EMG for the Y direction (or more recently a constant input from a s ignal generator) that drove the cursor. The 
following example demonstrates he can recognizably spell his name beginning from below. (The letters are spelled 
from below upwards due to the fact that the Wi vik keyboard covers the lower part of the Word pad screen allowing only 
one line for viewing. After each line is full, we press 'return' and the \ext select pointer' is returned to the top of the 

screen.) 

[4th attempt] 
[3rd attempt] 
[2nd attempt] 
[ 1'1 attempt] 

.JOHN 
JOHPN 
JWU 
JOHN 

12/17/98 JRDA Y26S.UFF 
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In a further example, he spells his name first then several of ours. Again beginning from below upwards, he has 
some difficulties on the first two lines. Then he spells JOIH.N. To our surprise, he spontaneously spells PHIL with 
an X for 'and', and then he spells KIM. This is followed by MELODY with some errors. Then he spelled KENNEDY 
and GOLDTHWAITE with a few errors. He has not learned to use the backspace. 

KENEDY GQLDXWAUTF 
PHILXKIM NMFELODY 
.JOIH.N 
HUJROHLN 
• JOHLQQQ.GYUVW ABD N 

Day 266. 12/17/98 

As an internal control we have recently had an opportunity to use EMG signals (without neural signals) to 
determine his maximum spelling rate with EMG. In this trial, the patient was not given a specific target word but was 
asked a series of conversational questions for which he determined the answer. His left eyebrow EMG drives the cursor 
horizontally, a signal generator provides a constant vertical displacement at a rate of 25 seconds per ful) screen, and 
the left neck EMG provides the 'enter' command. He achieved a maximum rate of three letters in 60 seconds spelling 
"GONE WITH" shown below. It was his eighth session over three weeks of practice using the EMG and signal 

- generator. Substituting neural signals for the signal generator (vertical control) achieved an almost identical maximum 
rate of 3 letters over 72 seconds when spelling "THE WIND". This was his initial attempt to use neural signals in many 
months. It will likely improve. He uses a backspace to delete errors thus producing correctly spelled words as shown. 
Previous attempts months ago prior to his recent illness produced a similar rate. The answers to the various questions 
are shown below (Read upwards from 151

). 
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[4th] 
[3rd] 
[2"d] 
[!5'] 

NOTHING 
THE WIND 
GONE WITH 
BRANDON 

JRDA Y 423 5/24/99 

[What were you thinking when moving the cursor?] 
[Neural signals substituted for vertical EMG] 
[What is your favorite movie?] 
[Spell the new guy's name] 

The fourth question in that session concerned his thoughts while driving the cursor. As discussed at the beginning 
of the 'results'section, he used mouth and tongue movements, eye movements, eyebrow movements and eventually lay 
quietly while driving the cursor across the screen. Now, after five months without using the neural signals, he appeared 
to allow them to fire spontaneously. Thus when asked what he was thinking about after session 423, he answered 
NOTHING' as shown above. In the next session (day 430) he was required to fire the neural signals to drive the cursor 
from left to right across the five icons on the Talk Assist screen. At the same time he had to minimize eyebrow EMG 
to avoid driving the cursor down and out of the line of icons. Thus he had to dissociate the EMG activity from the 
neural activity. He took over a minute in the first two trials to move across the full screen of icons, but after five trials 
he succeeded in 23 seconds. In subsequent trials he then moved too quickly and made errors such as driving below the 
line of icons, or skipping over icons. Eventually he produced accurate performance taking 19 to 32 seconds to cross 
the screen. This was similar to the prior performance shown in panel D above for day 192. When asked what he was 
thinking, he denied thinking of moving his mouth, tongue, eyes, or eyebrows together or separately. Instead, he blinked 
twice (for 'yes) when asked if he was thinking of moving the cursor. 

Discussion 
These data indicate that the recorded neural signals can drive the cursor across the screen, accurately entering and 

resting in icons or letter squares. As shown in the four paneled figure, there are improvements in performance 
producing learning curves. Accurate performance is impaired by tiredness as a result of repeated performances, toxicity 
due to infections, pain or analgesics. These ongoing medical problems have produced long interruptions in his training 
(December to May 1999), and required the use of residual EMG activity and a constant input to drive the cursor 
downwards. Despite these problems, the patient has repeatedly produced a maximal spelling rate of three letters per 
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minute. This is likely below the maximum output that could be obtained by further practice, refinements in the user 
interface and use of at least two neural signals, one in the X direction and the other in the Y, with a third neural signal 
to provide the enter command. 

The spelling rate is slightly faster than the spelling rate attained with the use of other techniques. It compares well 
with Birbaumer's ALS patients who used a binary EEG control signal after many months of practice. Table 3 in Kubler 
et al (Exp. Brain Research, 1999, 124:223-232) shows time per letter ranging from 10 seconds to 192 seconds. The 
average time in seconds for spelling the simplest two level letter was 66 seconds for patient HPS and 65 seconds for 
patient MP. Three level spelling took 76 seconds for HPS and 54 seconds for MP. We expect JR and future patients 
to spell much more quickly. The techniques are not directly comparable, of course. We expect to make a comparison 
between the arbitrary cursor movements enjoyed by our patient and a binary selection task (identical to Birbaumer's 
task) made by the same patient. 

The question of what drives the cursor is beginning to be answered. As described above, the patient indicates that 
the neural activity is no longer driven by specific face parts, though large activations of EMG activity are associated 
with activation of neural activity as would be expected in any general activation response. Recent results are suggesting 
that he can dissodate EMG activity from neural activity, and that when activating neural signals he is thinking only 
of driving the cursor. If this is borne out by further studies of petformance and the underlying neural correlates, it 
implies that plastic changes can be induced in the underlying cortex. In other words, the patient may develop cortex 
devoted to controlling the cursor. We have expectantly named this phenomenon "cursor cortex". 
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PARALLEL MAN-MACHINE TRAINING IN DEVELOPMENT OF EEG­
BASED CURSOR CONTROL 

A. Kostov1
•
2 and M. Polak1

•
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1Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada, 
2Glenrose Rehabilitation Hospital, Edmonton, AB, Canada, 

3Department of Computing Science, University of Alberta, Edmonton, Canada 

I. Introduction and Communication Task 
Assistive devices are essential in enhancing the quality of life for individuals who have severe disabilities, such 

as quadriplegia and amyotrophyc lateral sclerosis, or who have had massive brainstem strokes. However, the 
effectiveness of most assistive devices are dependent on preserved residual movements or speech. Without any physical 
channels for control, the only alternative for these people may be in exploring indirect voluntary modulation of 
electrical fields resulting from neural processes in their brains. This can provide control signals for simple interface 
between the user and the computer known as Brain-Computer Interface (BCI). Frequently used model for development 
of BCI is to control the cursor movements and its positioning on computer screen. The problems that remain unsolved 
even with currently most successful systems are very slow training of subjects, low spatiotemporal resolution, and poor 
accuracy in two-dimensional control. Precise positioning of the controlled object has so far not been achieved. What 
adds to the difficulty of this research is that a new subject does not know what thought patterns are going to give the 
best results, so initially the subject and machine are learning in parallel. The goal of our research is to develop new 
training technology that will achieve simple control us ing various mental activities. The control actions that we want 
to achieve are two-dimensional (up - down - left - right) object movement on the computer screen, and precise 
positioning of the control led object. In order to achieve our goal, we are working on the development of EEG recording 
and processing setup and training method that wi II maximize efficiency of extraction of user 's intentions. In order to 
make the BCJ practical, the following three constraints must be met: 

1. Minimize the training time of subjects. Current systems often require weeks of training before reasonable 
performance is achieved. Long training is usually the main obstacle in acceptance of any practical assistive 
system. 

2. Use as few EEG channels as possible. A brain-computer interface with too many electrodes becomes costly, 
cumbersome, and less feasible for implantation. 

3. Achieve high enough accuracy to provide reliable interface between man and machine. 

II. Methods and Communication Protocol 
The subject is comfortably seated in front of a feedback monitor while EEG signals are recorded using an electrode 

cap with 28 gel-filled electrodes arranged according to the 10-20 international electrode system, one ground electrode 
and the linked ears reference. The electrode cap and EEG-preamplifiers are electro-optically isolated from the rest of 
the equipment. This provides safety for both the subject and the operator. For signal conditioning, i.e. amplification 
and initial filtering we use the Brain Imager (Neuroscience Inc.). Analog EEG signals are then digitized at 200 
samples/s by a data acquisition card (DAQ) inserted Ln an lBM PC compatible computer. The same computer has 
special video card splitting the video output into two high resolution monitors, one for the subject and one for the 
operator supervising the experiment. 

Adaptive Logic Network (ALN) is the adaptive neural network that we use to classify the EEG patterns in the on­
line experiments. ALN is a non-linear adaptive machine learning system for supervised learning which is capable of 
learning any continuous function to any degree of accuracy [I]. 

During the real-time experiments, selected channels of EEG are processed and recorded on the computer' s hard 
drive. Our method carries out signal processing on channels used for control, extracts important features from the 
signals, presents the selected features to the ALNs for training [2,3 ], evaluates the ALN to determine direction of cursor 
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movement, and updates the cursor position on the subject's screen. The subject uses two manual switches to mark 
sequences of voluntary attempts to mentally control the movement of a circular object on the feedback screen. Since 
mental concentration is required to produce desired EEG signals, these switches allow the subject to rest during the 
experiment and avoid fatigue. The subject's goal is to move the object on the screen to a target. The position of the 
target is switched between UP and DOWN in one-dimensional setup or between UP, DOWN, LEFf and RIGHT in two­
dimensional setup. New position of the target is decided at the end of each run when the object reaches the target or 
the opposite end of the screen is hit. An example of the subject's screen can be seen in Fig. 1. We chose cursor 
movement because it is objective, easily implemented, simple for the user to learn, and can serve as a prototype for 
control of a wide variety of applications. 

target 

cursor • 

Figure 1: An example of the subject's feedback 
screen during an on-line experiment. The 
subject's goal is to move the cursor to the 
rectangular target. 

III. THE ASSESSMENT OF RESULTS AND THE RESULTS 
We had several subjects so far who learned to have reasonable control over the object on the screen in one 

dimension. Acquiring control with the BCI talces some training, but most of our subjects were able to show control 
after two sessions. Each of the sessions lasts approximately 30 minutes. The first half of each session is used to train 
a new classifier and the second half is used to evaluate the performance. Performance is evaluated in terms of how 
many times the target is hit versus missed at various movement speed of the object. During these sessions, position 
of the object is updated every 50 milliseconds and the speed of the animated object is determined by the number of 
steps that are required to hit the target, which is set by the operator before the experiment. Once fully trained in one­
dimensional control, our subjects can hit the target close to 100% of the time when 32 full steps are required to hit or 
miss the target. The FFT calculated spectrum for one of our subjects during BCI cursor control is shown in Fig. 2. As 
can be seen from Fig. 2, a large difference in spectral power density exists at around 10 Hz between the EEG recorded 
while the subject was thinking UP thoughts as compared to DOWN thoughts. It is interesting that this effect is reversed 
at the parietal electrodes, which clearly shows that the source of this activity is somewhere underneath central and 
parietal electrodes. 

So far we have been able to train only two subjects to achieve two-dimensional cursor control. One of the subjects 
is able-bodied person and the other one has post-polio syndrome. The·two-dimensional cursor control that these subject 
can achieve is approximately 80% of targets hit. 
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Figure 2. Averaged FFf spectrum of one subject during BCI session 

IV. Future Plans 
Our short term goals are to train a number of volunteers in two-dimensional cursor movement and positioning, 

as well as to develop a range of applications for the brain-computer interface. 
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The goal of this project is the development of a direct brain interface based on detection of event-related potentials 
(ERPs) within electrocorticogram (ECoG) obtained from the surface of the cortex. The initial study in this effort 
involved the identification of averaged ERP templates to be used for cross correlation based detection. Ten epilepsy 
surgery patients, undergoing monitoring with subdural electrode strips and -rid arrays, participated in this study. ECoGs 
were continuously recorded while subjects performed multiple repetitions for each of several motor actions. ERP 
templates were identified from action-triggered ECoG averages using amplitude criterion. At least one ERP template 
was identified for all ten subjects and in 56% of all electrode recording sets resulting from a subject performing an 
action. These results were obtained even though electrodes were placed solely for clinical purposes and not for research 
needs. Eighty-two percent of the identified ERPs be-an prior to the trigger, indicating the presence of premovement 
ERP components. The recording locations for multiple ERPs arising from the performance of a specific action were 
usually found on close-by electrodes. ERPs associated with different actions were occasionally identified from the same 
recording site but often had noticeably different characteristics. The ease with which ERP templates were identified 
for subjects and the differences apparent in the location or shape of valid ERPs related to different actions supported 
the use of subdurally recorded ERPs as a basis for a direct brain interface 

Ongoing, work to develop a direct brain interface is now focused on the detection of individual ERPs within the 
ECoG using cross-correlation between an averaged ERP template (as described above) and the continuous ECoG from 
the same electrode recording site. Each point where the cross-correlation value exceeds an experimentally determined 
detection threshold is considered a detection point. Each detection point is considered to be a valid "hit" if it occurs 
between one second before and a quarter second after the recorded time of a voluntary action. The difference between 
the hit and false positive percentages (HF-difference) is used as a metric of detection accuracy. To date, 15 subjects 
have been studied . HF-differences greater than 75 were found for 8 of the 15 subjects. Four subjects had HF-differences 
in the range 50 to 75. The subjects with low detection accuracy either performed only one action or had electrode 
locations not well suited for recording movement-related ERPs. The best HF-differences were 96 (96% hits - 0% false 
positives), 96 (100%-4%), and 93 (100%-7%). 

In all of these studies electrodes were placed solely to meet clinical needs and not for research purposes. The 
number of subjects for whom accurate detection of ERPs was possible even without custom placement of the electrodes 
over sensory-motor cortex indicates that a direct brain interface that can accept a command directly from the brain 
(without requiring any physical movement) and produce a single switch closure is quite feasible. Such an interface 
would enable people with severe disability (i.e. locked-in syndrome) to communicate and to participate in society. 
ResulL'i further indicate the strong feasibility of multiple control channels using this approach. 
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The actual provision of this direct brain will require chronic subdural implantation of electrodes, an extremely 
invasive procedure. Before this step is considered, additional studies are being performed with epilepsy surgery subjects 
to 1) confirm that improved electrode placement will produce higher percentages of accurately detectable ERPs and 
2) demonstrate the use of the direct brain interface for communication or other functional tasks . 

Concurrently, other studies are underway which include: 1) improved methods to predict the accuracy possible with 
a particular ERP template; 2) template optimization through data preprocessing and/or selection of average constituents; 
3) methods for ERP detection when there is no associated physical motion, 4) exploration of the ability of subjects to 
control or modify ERP quality given appropriate feedback; 5) optimization of the detection methods through alternative 
methods for analysis of the cross-correlelogram; and 6) examination of multiple-electrode detection algorithms. 
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BRAIN-COMPUTER INTERFACE TECHNOLOGY: 

Fluctuations in Alertness 

THEORY AND PRACTICE 

S. Makeig, T.-P. Jung and T. J. Sejnowski 
NHRC, UCSD and Salk Institute 

In tasks requiring sustained attention, human alertness varies on both sub- and supra-n-finute time scales. This 
can have serious consequences in occupations ranging from air traffic control to monitoring of nuclear power plants. 
A method of objectively monitoring human operators for signs of drowsiness would by useful in those working 
environments. Our previous results confinned that the group averages of task performance in an auditory detection 
task and a visual compensatory tracking task follow similar trends. Initial near-ideal performance begins to decay 
after about one minute. Thereafter, group mean error rate rises steadily until I I min into the task, after which it 
remains more or less stable near 30%. However, individual performance on either monitoring task often tends to 
fluctuate irregularly with central state, including periods of from near twenty seconds to many minutes of 
intermittent or complete unresponsiveness (Makeig & Inlow, 1993; Makeig & Jung, 1995; Makeig & Jung, 1996; 
Jung et al., 1997). 

EEG-Based and Eye-Activity Based Alertness Monitoring 
We have reported that changes in the electroencephalographic (EEG) power spectrum (including stable 

individual differences) accompany these fluctuations in the level of alertness, as assessed by measuring 
simultaneous changes in EEG and performance on an auditory monitoring task (Makeig & Jung, 1996; Jung et al., 
1997). These papers showed that continuous, accurate, noninvasive, and near real-time estimation of an operator's 
global level of alertness is feasible using EEG spectrum. Our recent work suggested that eye activity (blink 
frequency and duration, fixation frequency and duration, pupil diameter) can also be used to detect the onset of 
drowsiness in a visual tracking tasks. Our current work is to compare and contrast these two complementary 
measurements and to discuss how to fuse multiple streams of psychophysiological information to deliver reliable 
information about changes in the cognitive state of operators of complex computer-based systems. At the workshop 
we could present the signal processing methods we have used to derive stable near-real time alertness measures and 
discuss their possible applications to brain-mediated control. 

Spontaneous and Single-Trial EEG Signal Processing 
Our recent work has focused on developing signal processing tools and methods for single-trial analysis of EEG 

signals that combine Independent Component Analysis (lCA) and time/frequency analysis (Makeig et al., 1996-99; 

Jung et al., 1998-99.). Using these techniques, we have developed methods of extracting the activities of the eyes, 
scalp muscles and spatially stationary brain activities into independent channels. We foresee many uses for this 
technology, including online artifact elimination and/or muscle and eye activity measurement. At the workshop we 
might demonstrate use of these tools on a PC or workstation equipped with Matlab, if one is available. The software 
tools we would demonstrate are publicly available to all participants through our web site 
(http://www.cnl.salk.edu/-scott/ica.html). 

EEG-Mediated Control 
Finally, with Richard Sweringen and Marwan Jabri of the University of Sydney, we have begun to explore the 

use of new paradigms for EEG-mediated control of a computer cursor. At the workshop we might demonstrate a 
portable computer and experimental data collection task we are using to gather data on this topic, and could discuss 
our strategy for incorporating out recent advances in EEG signal processing in this effort. 
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BRAIN-COMPUTER INTERFACES 
BASED ON THE STEADY-STATE VISUAL EVOKED RESPONSE 

M. S. Middendorf [1] G. McMillan [2], G. Calhoun [2], and K. S. Jones [3] 
(1] Middendorf Scientific Services, Inc,. [2] Air Force Research Laboratory,[3] University of Cincinnati 

The Alternative Control Technology (ACT) program of the Air Force Research Laboratory, Wright-Patterson 
AFB, Ohio is engaged in the design and evaluation of a variety of hands-free alternative controls. These inc1ude 
eye, head, speech, electromyographic, and electroencephalographic (EEG) systems that allow corrununication with 
computers while the operator's hands remain engaged in other activities. For example, alternative controls may 
enable maintenance technicians to manually operate test equipment while accessing schematics on a head-mounted 

display. 

Research in the ACT program has harnessed an aspect of the EEG that serves as an effective communication 
tool for brain-computer interfaces (BCis). This aspect is the steady-state visual evoked response (SSVER) [I]. Two 
methods of using the SSVER to control the operation of a physical device or computer program have been employed 
in this research. In one, operators are trained to exert voluntary control over the strength of their SSVER. In the 
second, multiple SSVERs are used for control. The latter requires little or no training because the system capitalizes 
on the naturally occurring responses. The purpose of this paper is to describe the SSVER-based BCis and to 
surrunarize research findings. 

BCI Based On Self-regulation Of The SSVER 
Communication Task 

Communication between lhe operalor and the computer in this BCI is binary in the sense that only two control 
actions are possible. For example, a device can be turned on or off, moved left or right, etc. It is also appropriate to 
describe this BCI as a dfacrete controller. That is, changes in the SSVER result in control actions occurring at fixed 
intervals of time. 

EEG Component 
The source of control is the amplitude of the SSVER. The SSVER is elicited using a visual stimulus that is 

modulated at a fixed frequency. The SSVER is characterized as an increase in EEG activity at the stimulus 
frequency. Typically, the visual stimulus is generated using white fluorescent tubes modulated at 13.25 Hz and 
mounted behind a translucent diffusing panel. With biofeedback training, operators learn to willfully increase the 
amplitude of their SSVER. 

Communication Protocol 
The EEG is acquired using gold-cup electrodes located over occipital sites 01 and 02 with the left mastoid as 

ground. The differential signal between 01 and 02 is amplified, filtered, and processed by a hardware-based lock­
in amplifier system (LAS), that provides a continuous measure of SSVER amplitude. This information is sampled 
by a computer for feedback and control purposes. Control logic based on thresholds and duration requirements is 
used to transform the noisy SSVER amplitude into smooth, stable control. For example, when the SSVER remains 
above or below an experimenter-specified threshold for 75% of the samples in a one-half second interval, a discrete 
control action occurs. The threshold and duration parameters are adjustable for individual operators and specific 
applications. Typically, two thresholds are employed to achieve a binary control signal; raising the SSVER above 
the upper threshold for the required duration results in one control action and lowering the SSVER below the lower 
threshold for the required duration results in a different control action. 

Assessment of Results 
As stated earlier, this BCI provides discrete, binary control; control actions can only be correct or incorrect. 

Thus, performance data is presented as percent correct and the average time to make a correct control action. 
Leaming curve analyses are used to determine how much training is required to use the BCJ. Scalp-wide 
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topographical maps and other time and frequency domain analysis are used to evaluate possible mechanisms of self­
regulation. 

Results 
In general, the studies show that all operators perform above chance level. In addition, data analysis has 

revealed that there are large individual differences between operators . While some operators experience difficulty, 
others achieve nearly perfect control. These are general observations; specific results are reported in the following 
discussions of research conducted in the ACT program. 

Device Control 
Flight simulator roll control. In this task, the BCI is used to control the roll position of a simple flight 

simulator. A display in the simulator provides SSVER amplitude feedback and presents a series of random 
commands requiring the operator to roll right or left to specific target angles. The stimulus lamps are located 
adjacent to the display behind a translucent diffusion panel. As operators increases their SSVER amplitude above 
one threshold, the simulator rolls to the right. When the SSVER amplitude is decreased below a lower threshold 
value, the simulator rolls to the left. Although no formal studies were conducted with this system, operators were 
generally able to roll the simulator in the correct direction 80% of the time after 5-6 training sessions . 

Muscle stimulator operation. A functional electrical stimulator (FES), a rehabilitation device designed to 
exercise paralyzed limbs, was integrated with this BCI. Operators are required to hold their SSVER amplitude 
above the "on" threshold for one second to activate the FES. This causes the FES to activate at the muscle 
contraction level and begin increasing the current, gradually recruiting additional muscle fibers to cause knee 
extension. Decreasing the SSVER magnitude below the "off' threshold results in the reversal of the FES system 
and subsequent ramp-down of the current and lowering of the limb. The control algorithm parameters are adjusted 
to emphasize accuracy over speed . 

Three able-bodied participants with previous SSVER self-regulation experience participated in 3 to 5 one-hour 
sessions. A display provided SSVER amplitude feedback, commanded knee angle, actual knee angle and FES 
status. The visual stimulus was located above the display monitor. Time history data was examined to ensure that a 
change in current level preceded a change in knee angle to confirm that the able-bodied participants accomplished 
knee extension by controlling the brain-FES interface. Data from each participant's best session was examined. 
Participants acquired 95.8% of the commanded knee angles with average FES on and off latencies of 4.28 seconds 
and 5.93 seconds, respectively [2]. 

Mechanisms of SSVER self-regulation 
The control signal in this BCI is derived as a differential measure of SSVER activity at 01 and 02. As a result, 

operators can change the amplitude of the control signal by self-regulating: (I) the relative amplitude of the SSVER 
activity at 01 and 02, (2) the relative timing (phase) of the SSVER activity at the two sites, or (3) a combination of 
both. In one experiment three participants performed a task that required repeated 2-second periods of SSVER 
enhancement or suppression. Scalp-wide EEG was recorded. Each participant showed inter-hemispheric shifts of 
SSVER activity between the enhance and suppress conditions. Data for one participant is shown in Figure 1. These 
results suggest that modulation of the relative amplitude of the SSVER at 01 and 02 plays a role in SSVER self­
regulation. In a separate study with four participants, monopolar 01 and 02 signals were recorded in addition to the 
bipolar control signal. Phase and amplitude relationships between 01 and 02 were evaluated during periods of 
sustained SSVER enhancement and suppression. Each of the participants showed evidence of phase-based control. 
They maintained relative phase synchrony between 01 and 02 during periods of suppression and produced 45-180 
degrees of phase asynchrony during enhancement. As in the topographic analysis above, independent regulation of 
0 1 and 02 amplitude was observed as well [3]. 
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Figure 1 - Topographic maps of 13.5 Hz activity recorded during task-related SSVER 
enhancement and suppression for Participant 2. Note the evenly distributed activity in the O 1 
and 02 regions of the left map (suppression) and the asymmetric activity in the right map 
(enhancement). 

Effects of feedback on learning SSVER self-regulation 

Eight participants were trained to perform a switch selection task under one of two feedback conditions, discrete 
or proportional. Three switches were aligned next to three target fields on a computer generated display and the task 
involved selecting the switch next to the field containing a target. To change which switch was selected, 
participants increased their SSVER above an experimenter specified threshold to begin cycling through the 
switches. To stop progression through the switches, the participants decreased the SSVER below threshold. 
Changes in the border and fill color of the switches indicated whether the SSVER was above or below threshold in 
the discrete feedback condition. In the proportional feedback condition, a dynamic vertical bar with a threshold 
mark was displayed. Learning curves for the two groups are shown in Figure 2. Both groups showed significant 
learning, but there was no overall difference as a result of feedback type. 
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Figure 2- Learning curves for an SSVER-based switch selection task under two feedback conditions 
(n = 4 per group). There was no overall difference between the groups. However, the data for sessions 
1-5 suggests that the continuous feedback may have supported more rapid initial learning. 
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BCI Based On Naturally Occurring SSVER 
Communication Task 

The task is to select virtual buttons on a computer screen. A virtual button is a small area of the screen similar 
to an icon that can have a control action associated with it. The luminance of the virtual buttons is modulated, each 
at a different frequency to produce the SSYERs. The operator selects the desired button simply by looking at it. At 
present, a maximum of two virtual buttons have been displayed at one time. Therefore, the discussion regarding the 
binary and discrete nature of the first controller is relevant to this BCI. 

EEG Component 
The SSVER is also the source of control for this system. However, this is a passive system because operators 

are not actively regulating their SSVER amplitude. This system uses the naturally occurring amplitude of multiple 
SSVERs. Therefore, little or no training is required. 

Communication Protocol 
The EEG is acquired using plastic, silver chloride-coated, surface electrodes. A small drop of aloe vera gel is 

applied to each electrode to improve conductivity. The electrodes are held in place over 01, 02, and Oz (ground) 
using a headband. The differential (01-02) EEG is filtered, amplified, and sampled by a computer. Three software 
LASs are implemented for each virtual button. One LAS computes amplitude at the stimulus frequency, while the 
other two compute amplitude at frequencies slightly above (upper frequency) and below (lower frequency) that 
frequency. The control algorithm monitors the LAS outputs to determine if a selection should be made. The 
algorithm requires that certain criteria be satisfied for a fixed time duration. First, the amplitude of the center 
frequency must be above a threshold value. This is intended to prevent an unwanted selection due to natural 
fluctuations in the EEG. Second, the amplitude of the center frequency must be larger than the average of the lower 
and upper frequencies by a fixed ratio. The purpose of this is to ensure that broad-band increases in activity do not 
trigger the system. When these criteria are met, a red border appears around the corresponding virtual button. lf 
these criteria are maintained continuously for 0.3 seconds, then the corresponding button is selected. This BCI 
system also features an automated software procedure for calibrating operators to set thresholds and other control 
algorithm parameters. 

Assessment of Results 
The performance of this system is evaluated in terms of percent correct selections and average time for correct 

selections 

Results 
Eight people participated in a formal evaluation of this BCI. Two virtual buttons (2.9 cm wide by 3.8 cm tall) 

were displayed on the left and right sides of a computer monitor (separated by 10.3 cm) and modulated at 23.42 and 
17.56 Hz, respectively. The participants' task was to select the virtual button indicated by a small yellow command 
box. The participants averaged 92 percent correct selections (range: 83 to 99%) with an average selection time of 
2.1 seconds (range: 1.24 to 3.02) (4]. 

Future Plans 
Despite the success demonstrated with the self-regulation based BCL substantial training is required. For this 

reason, the ACT program wi ll focus its near-term BCI efforts on approaches that use naturally occurring SSVERs. 

The next step with this BCI will be to compare its performance to that of a standard computer mouse. A Fitts' 
Law paradigm will be employed to compare the speed and accuracy of the two controllers. Other studies will 
explore the number of virtual buttons that can be simultaneously presented and their spatial separation. Although 
additional buttons and functions will increase usability, this BCI appears ready for near-term application as an 
assistive technology. 
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EEG-BASED CONTROL OF VIRTUAL BUTTONS 

M. S. Middendorf 
Middendorf Scientific Services, Inc. 

The Alternative Control Technology program, located in the Air Force Research Laboratory, Wright-Patterson 
AFB, Ohio, has developed a brain-computer interface (BCI) system that allows operators to select virtual buttons on 
a computer screen simply by looking at the desired button. A virtual button is a small area of the screen, similar to 
an icon, that can have a control action associated with it. Control inputs are achieved by modulating the luminance 
of the virtual buttons at different frequencies, thereby causing a frequency-specific steady-state visual evoked 
response (SSVER) to appear in the operator's EEG when the operator fixates on a button. Once an SSVER is 
reliably detected, the corresponding virtual button is selected. Accordingly, the SSVER is the central component of 
the EEG that enables this technology. At present, a maximum of two virtual buttons can be displayed at one time. 

The BCI system being demonstrated consists of a 486 PC operating at 120 MHz with a standard video card, 
color monitor, and a Scientific Solutions Labmaster AD analog-to-digital (AID) converter. The software is written 
in Microsoft™ Visual C 1.5.2 and is run under DOS. The I/0 board controls the software timing which is updated 
at 70.25 Hz. 

EEG signals are acquired with three silver chloride-coated, plastic surface electrodes, that are mounted in a 
headband and located over occipital sites 01, 02, and Oz. The scalp is cleaned with alcohol to reduce impedance 
and a small drop of aloe vera gel is placed on each electrode to improve conductivity. Impedance between electrode 
pairs is typically below 35K ohms. The bipolar EEG signal (01-02, with Oz as ground) is amplified and filtered 
using a S75-01 biological signal amplifier manufactured by Coulboum Instrumentation, Inc. 

EEG signals are processed using lock-in amplifier systems (LAS), that produce an estimate of amplitude at a 
specified frequency. Three LAS 's are implemented for each virtual button - one LAS computes amplilude at the 
stimulus frequency, while the other two compute amplitude at frequencies slightly above and below that frequency. 

The control algorithm monitors the LAS outputs to determine if a selection should be made. The algorithm 
requires that certain criteria be satisfied for a fixed time duration . First, the amplitude at the stimulus frequency 
must be above a threshold value (to prevent an unwanted selection due to natural EEG fluctuations) . Second, the 
amplitude at the stimulus frequency must be larger than the average of the lower and upper frequencies by a fixed 
ratio (to ensure that broad-band increases in activity do not trigger the system). When these criteria are met, a red 
border appears around the corresponding virtual button. If these criteria are maintained continuously for 0.3 
seconds, the button is selected . 

In support of the demonstration, we would appreciate two chairs, a small table, and access to a power outlet. 
Some control over room lighting may be necessary if the ambient light level is very bright. Conference attendees 
will be invited to try the system. 
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CURRENT TRENDS IN GRAZ BRAIN-COMPUTER INTERFACE (BCI) 
RESEARCH 

C. Neuper, C. Guger, E. Haselsteiner, B. Obermaier, 
M. Pregenzer, H. Ramoser, A. Schlogl, G. Pfurtscheller 

Department of Medical Informatics, Institute of Biomedical Engineering 
Ludwig Boltzmann Institute of Medical Informatics and Neuroinformatics 

University of Technology Graz 

Index Terms - Brain-computer interface (BCI), common spatial patterns (CSP), event-related desynchronization 
(ERD), adaptive autoregressive models, EEG feedback 

I. Introduction 
The Graz Brain Computer Interface (BCI) project is aimed at developing a technical system that can support 

communication possibilities for patients with severe neuromuscular disabilities, who are in particular need of 
gaining reliable control via non-muscular devices. This BCI system uses oscillatory EEG signals, recorded during 
specific mental activity, as input and provides a control option by its output. The obtained output signals are 
presently evaluated for different purposes, such as cursor control, selection of letters or words, or control of 
prosthesis. 

Between 1991 and 1999, the Graz BCI project moved through various stages of prototypes. In the first years, 
mainly EEG patterns during willful limb movement were used for classification of single EEG trials [1-4). In these 
experiments, a cursor was moved e.g. lo the left, right or downwards, depending on planning of left hand, right hand 
or foot movement. Extensive off-line analyses have shown that classification accuracy improved, when the input 
features, such as electrode positions and frequency bands, were optimized in each subject [5). Apart from studies in 
healthy volunteers, BCI experiments were also performed in patients e.g. with an amputated upper limb [6] . From 
the preliminary results of the patients' study, we could expect that spatiotemporal EEG patterns re lated not only to 
planning but also to imagination of a specific movement, can be classified on-line and therefore used for cursor 
control. 

As mentioned before, scalp-recorded rhythmic EEG components are used as input signal. Several studies have 
shown that EEG responses during voluntary movement can involve both, "event-re lated desynchronization" (ERD), 
and "event-related synchronization" (ERS) of different frequency components [7). During preparation of a voluntary 
hand or finger movement, for example, a circumscribed ERD can be found over the contralateral hand area with 
respect to the side of the movement being planned (8). Of special interest is that such an asymmetrical ERO 
distribution could also be demonstrated, when subjects only imagine performing such movements [9]. This fact is 
exploited by the Graz BCI system using left-right differences in the sensorimotor EEG to provide a control option in 
one dimension [10). 

JI. Methods 
A. EEG Preprocessing 
For the analysis of oscillatory EEG components, we investigated the following preprocessing methods: 

(i) Calculation of band power in predefined, subject-specific frequency bands in intervals of 250 (500) ms L 10], 
(ii) Adaptive autoregressive (AAR) parameters estimated with each iteration [ 11 ], 
(iii)Calculation of common spatial filters (CSP) (12). 

When band power data are used for classification, first the reactive frequency bands must be selected for each 
subject. This means that data from an initial experiment without feedback are required . Based on these training data, 
the most re levant frequency components can be determined by using the distinction sensitive learning vector 
quantization (DSLVQ) algorithm (5, 13]. This method uses a weighted distance function and adjusts the influence of 
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different input features (e.g. frequency components) through supervised learning. When DSLVQ is applied to 
spectral components of the EEG signals (e.g. in the range of 5 to 30 Hz), weight values of individual frequency 
components according to their relevance for the classification task are obtained. 

The AAR parameters, in contrast, are estimated from the EEG signals limited only by the cut-off frequencies, 
providing a description of the whole EEG signal. Thus, an important advantage of the AAR method is that no a 

- priori information about the frequency bands is necessary l 14]. 
For both approaches, two closely spaced bipolar recordings from the.left and right sensorimotor cortex were used. In 
further studies, spatial information from a dense array of electrodes located over central areas was considered to 

._ improve the classification accuracy. For this purpose, the CSP method was used to extract a series of spatial filters 
with decreasing discriminatory power [15]. These spatial filters can be seen as a representation of spatial EEG 
patterns associated with the different mental states (e.g. left and right motor imagery). -

-

-

-
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B. Classification Procedures 
An important step towards real-time processing and feedback presenlation is the setup of a subject-specific 

classifier. For this, two different approaches have been investigated in more detail: 
(i) Neural network based classification, e.g. a learning vector quantization (LVQ) f2], and 
(ii) Linear discriminant analysis (LOA) [16, 17). 

L VQ was mainly applied to on-line experiments with delayed feedback presentation. In these experiments, the 
input features were extracted from a 1-s epoch of EEG recorded during motor imagery. The EEG was filtered in one 
or two subject-specific frequency bands before calculating four band power estimates, each representing a time 
interval of 250 ms, per EEG channel and frequency range. Based on these features, the LVQ classifier derived a 
classification and a measure describing the certainty of this classification, which in tum was provided to the subject 
as a fe-edback symbol at the end of each trial [ 10). 

In experiments with continuous feedback based on AAR parameter estimation, a linear discriminant classifier 
has usually been applied for on-line classification. The AAR parameters of two EEG channels are linearly combined 
and a time-varying signed distance (TSO) function is calculated [11 , 14, 18]. With this method it is ·possible to 
indicate the result and the certainty of classification, e.g. by a continuously moving feedback bar. 

The different methods of EEG preprocessing and classification have been compared in extended on-line 
experiments and data analyses [18, 19]. These experiments were carried out using a new developed BCJ system 
running in real-time under Windows with an 8 or 64 channel EEG amplifier [20]. The installation of this system, 
based on a rapid prototyping environment, includes a software package that supports the real-time implementation 
and testing of different EEG parameter estimation and classification algorithms [18) . 

III. Experiments 
A. Experimental Task 

All experiments are based on the same basic imagination paradigm (training session without feedback): At the 
beginning of each trial (t= 0.0 s), a fixation cross appears at the center of a monitor. At 2.0 s a short warning tone 
("beep") is delivered and at 3.0 s, an arrow pointing either to the right or to the left (cue stimulus) is presented for 
1.25 s indicating the target side of this trial. The subject's task is to imagine a movement of the right or the left hand, 
depending on the direction of the arrow. One experimental session consists of 4 experimental runs of 40 trials, 
providing a total of 160 trials per session. 

Further experimental sessions differ mainly with regard to the setup and presentation of feedback. In 
experiments with delayed feedback, the success of discrimination between imagination of left and right hand 
movement is provided at the end of each trial (t= 6.0 s). In particular, feedback consists of 5 different symbols, 
indicating how well the subject-specific classifier could recognize the selected EEG features [J 0]. 
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In the case of an experiment with continuous feedback, a horizontal bar moving to the right or left boundary of 
the screen is shown for a period of 4.0 s (Figure 1). The subject is instructed to imagine the experience of moving 
the right hand, in order to extend the bar toward the right s ide. Concentration on moving the left hand, in contrast, 
would extend the bar to the left. The length of the bar directly corresponds to the linear distance function obtained 
by on-line analysis [21 ]. 

B. Protocol 

left 

A 

right 

m B 

beep 

Fixation cro.s aJE Feedback 

0 2 3 4 5 6 7 8 limeins 

Figure I: Paradigm for experiments with continuous feedback. A: the 
arrow is pointing to the left side and therefore the subject has the task 
to extend the horizontal bar to the left. B: the arrow is pointing and the 
bar extending to the right (correct classification assumed). 

The basic idea of the Graz BCI is to train the computer to recognize and classify certain subject-specific EEG 

patterns generated by motor imagery. Based on training sessions without feedback, the acquired data are applied off­
line to the (i) bandpower, (i i) recursive least squares (RLS) or (iii) common spatial filters (CSP) algorithms, to 
calculate the appropriate coefficients for each iteration. In other words, a subject-specific classifier is created and 
then applied to provide feedback in the following sessions. During these feedback sessions, the coefficients are 
calculated and classified in real-time e.g. to show the feedback bar on the screen. As soon as feedback is provided, 
however, changes of the EEG patterns can be expected, that require again adaptation of classification methods. 
There is evidence from several experiments that it is favorable to update the classifier after a few feedback sessions 
[2, 14, 18, 19). 

IV. Results 
A. Experiments with Delayed Feedback 

Long-term experimental series, using feedback computed with the bandpower and L VQ approach, were carried 
out with 4 subjects. This type of feedback yielded to minimum on-line classification errors of around 10 %, 13 %, 
14 % and 17 % after several sessions [ 14]. 

B. Experiments with Continuous Feedback 
In these experiments, the horizontal feedback bar was continuously updated in real-time by using either the CSP 

or AAR together with LDA approach. After 6 or 7 sessions with several updates of the weight vectors, the lowest 
on-line errors for three subjects were 1.8 %, 6.8 %, and 12.5 % for the CSP method [ 19] and, around 5%, 9% and 

9% for the AAR method (18). 

To compare the classification results obtained with different preprocessing methods, namely bandpower, RLS, 
and CSP algorithm, the time courses of error rates were computed with a 10 times IO fold cross validation of a 
linear discriminant. Figure 2 shows the error time courses for one experimental session of a trained subject. On-line 
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feedback was given with the CSP method. After cue presentation, the error rate decreases significantly for all three 
algorithms. The lowest error rate for the CSP method (1 %) was observed at second 5.5, the lowest error rate for the 
RLS ( 3 %) at second 6 and for bandpower (6 %) at second 6.5. 

50 
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Classlflcation Results 

Claaaiflcation T ime Point In aeconda 

1--csP 
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-- Bandpower 

Figure 2: Classification results for one subject and session for three different algorithms: (i) CSP, (ii) RLS and 
(iii) Band power. The error rates were obtained with a 10 times 10 fold cross validation of a linear discriminant. 
The arrow was presented at second 3. 

V. Discussion 
Recent experiments were carried out to optimize the BCI training procedure. For example, we investigated the 

impact of feedback presentation on sensorimotor rhythms [22]. Although a direct comparison of experiments with 
delayed vs. continuous feedback is not possible, it appears that instantaneous feedback information improves the 
left-right differentiation of EEG patterns [6, 21 ). 

The classification results show that all methods used, (i) bandpower, (ii) AAR and (iii) CSP, result in low 
classification error rates after some sessions. At this time, the standard method used at our lab is AAR parameter 
estimation with the RLS, combined with the LDA algorithm. AAR models have the advantage that it is not 
necessary to specify the reactive frequency band, as it is for the bandpower method. 

The linear discriminant analysis has the advantage that, compared to the L VQ, a smaller amount of training 
trials is needed to set up a suitable classifier for on-line experiments. Therefore, the next experiment can be 
performed immediately after a session which was used to calculate the classifier. 

First investigations with the CSP method reveal promising results. However, one has to consider that this 
method requires a larger number of e lectrodes than the other procedures and that it shows some sensitivity to the 
electrode montage. The CSP method might be an interesting approach for special applications, as e.g. to process 
signals from implanted electrode arrays. 

An important feature of the new Graz-BCI is, that it is equipped with a remote control that allows controlling 

the system over an analog dial up, LAN or Internet connection. Beside on a normal PC, the system also runs on a 
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notebook or embedded computer. That means a patient's system can be remotely updated, to change the weight 
vector, the analysis method or to install improved software. Furthermore, EEG data recorded during the training 
sessions at the patient's home can be transmitted to the BCI developer for off-line processing. At this time a c;; 

prototype system is tested for opening and closing a hand-orthesis in a patient with a CS lesion . The system is 
installed in the patient's home and remote controlled from our lab. 

Another goal of the Graz BCI project is to implement EEG-based control of prosthetic devices to investigate 
how the feedback (e.g. moving hand prosthesis) affects the overall accuracy of the system. It can be expected that 
providing feedback by a moving hand prosthesis is more efficient than a cursor moving on a computer monitor. 

The work was supported in part by the "Fonds zur Forderung der wissenschaftlichen Forschung", project 
Pl 1208-MED, the "Steiermarkischen Landesregienmg" and the "Allgemeine Unfallversicherungsanstalt (AUV A)" 

in Austria. 
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RAPID BCI PROTOTYPING: RESULTS WITH ADAPTIVE 
AUTOREGRESSIVE PARAMETERS AND COMMON SPATIAL 

PATTERNS 

C. Guger, H. Ramoser, C. Neuper, G. Pfurtscheller 
Department of Medical Informatics, Institute of Biomedical Engineering 

Ludwig Boltzmann Institute of Medical Informatics and Neuroinformatics 
University of Technology Graz 

A BCI system that uses Rapid Prototyping to enable a fast transition of various types of parameter estimation 
and classification algorithms to real-time implementation and testing is described. The system is able to process 
multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC. The BCI can be 
controlled over the Internet, LAN or modem. For assistive applications an embedded computer can be used. Matlab 
controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to describe 
the current state of the EEG in real-time. Results are presented for two different parameter estimation methods: 
calculation of adaptive autoregressive (AAR) parameters and common spatial patterns (CSP). In the first case the 
recursive least square algorithm is utilized to control a prosthesis . In the second case a horizontal bar is controlled 
on a computer screen by utilizing subject-specific spatial patterns that weight each electrode according to their 
importance to the discrimination task and allow to achieve a high classification accuracy. Experiments with three 
subjects resulted in 86,95 and 98% accuracy during on-line discrimination of left and right motor imagery. 
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Background 

AN EEG-BASED CONTROLLER FOR THE HAND GRASP 
NEUROPROSTHESIS 

P. H. Peckham, R.T. Lauer, K.L. Kilgore 
Case Western Reserve University, Cleveland FES Center of Excellence, 

Cleveland VA Medical Center, MetroHealth Medical Center 

Functional neuromuscular stimulation (FNS) has been effectively used to restore hand grasp in individuals who 
have sustained a spinal cord injury at the fifth or sixth cervical level. The current hand grasp neuroprosthesis, 
developed at Case Western Reserve University and the Cleveland VA [l], uses an implanted stimulator that 
electrically excites paralyzed muscles of the forearm and hand to restore both palmar and lateral grasp. Either an 
external [2] or implanted [3] transducer mounted at the shoulder or wrist provides the control over hand opening and 
closing. As the neuroprosthesis continues to develop to allow its implementation in both arms or implantation in 
persons with a higher cervical level injury, the reliance upon existing voluntary movement for a control signal 
becomes increasingly difficult. Therefore, alternative methods for contromng hand function must be investigated. 

There are currently several alternatives that have been investigated for the control of the neuroprosthesis. These 
include the use of electromyographic (EMG) signals [3]. head movement [4], respiration control [5], and voice 
control [6]. Another method that has been proposed is the use of signals recorded through the use of intracortical 
electrodes. One study has demonstrated that an electrode could be implanted into the cortex to record neuron firing 
patterns, which were then used to operate a computer cursor [7]. These signals might have future applications in 
controlling electrically stimulated muscles. Other investigators [8,9,10] have also studied the firing patterns of the 
neurons in the motor cortex to predict extremity movement. One goal of this research would be to use this signal to 
operate a neuroprosthesis to restore function to the entire upper extremity. 

The use of intracortical signals to operate the neuroprosthesis is attractive since it would allow for the 
restoration of the link between the brain and hand movements. Another possible method of using the brain signals to 
operate the neuroprosthesis would be to use the electroencephalogram (EEG). Several investigators have 
demonstrated that subjects can be trained to voluntarily control the amplitude of a specific frequency component of 
the EEG [11,12] or the slow cortical potential [13]. This signal has been used to move a cursor on a computer 
screen, which is the basis of an assistive communication device for those persons with severe physical disabilities 
(i.e. ALS and stroke). These signals could also have potential application to the field of neuroprosthetics. 

Specific Aim 
The objective of this study was to develop and examine the feasibility of an EEG-based controller for use with 

the oeuroprosthesis. During the course of this investigation, there were two studies that were conducted. The first 
study was the examination of the use of the frontal beta rhythm to operate a neuroprosthesis. The frontal beta 
rhythm was selected as the control signal since there would be little interference from electrical stimulation upon the 
recording of the signal, and, since we were recording from areas not directly related to extremity movement, little · 
interference of remaining voluntary movement upon EEG control was expected. The second study was focused on 
the development of the EEG-based controller for the neuroprosthesis. This study is still in progress, although 
preliminary findings indicate that the EEG signal can be used to control hand grasp. However, the effectiveness of 
this signaJ has yet to be defined. 

Methods 
A total of six subjects (four able-bodied and two neuroprosthesis users) have participated in this investigation. 

For the first study, Dr. Jonathan Wolpaw and colleagues provided the instrumentation and protocols used to train 
subjects to control the amplitude of the EEG. The brain-computer interface (BCI) and the protocols have been 
described extensively elsewhere [11 ], so only a brief synopsis is provided. For training in the control of the frontal 

92 

II 



-
-
-
-

-
-

-

beta, each subject was seated in front of a monitor, upon which appeared a cursor in the middle and a target at either 
the top or bottom. Subjects were trained to identify mental states that would achieve cursor movement toward the 
target. The EEG signal was recorded from all areas of the brain using 64 electrodes arranged in a modified 10-20 
format. For cursor control, only the 25-29 Hz component of the EEG recorded from the FPl, FP2 or F3 sites were 
used. Training for each subject involved one tb three sessions per week. Each session consisted of 8 runs, 3 minutes 

in length, with anywhere from 30 to 35 targets per run. 

Once subjects had attained a high accuracy rate (> 90% ), additional studies were performed to determine if EEG 
control could be maintained under conditions of neuroprosthetic use. To evaluate the effect of movement upon EEG 
control, the following experiment was performed. The subject was seated in front of a table upon which was placed 
the computer monitor, a 0.5-kg weight, and a divider. The subject was instructed for the first run to move the cursor 
as they normally would. In the next run, the subject was then instructed to move the cursor while moving the weight 
with their right hand over the divider. The next run involved the subject repeating the movement with their left hand. 
The series of non-movement, right movement, and left movement was then repeated twice, for a total of 9 runs. For 
the neuroprosthesis users, this protocol was modified in that the subject was asked only to move their hand to the 
weight. All other aspects were the same. To address the issue as to whether the electrical stimulation would interfere 
with the control of cursor movement, the neuroprosti1esis users were asked to turn their systems on, and then 
proceeded with a normal session. The system was turned off between runs to prevent fatigue of the muscles due to 

continuous stimulation. 

A final experiment that was conducted as part of the examination on the use of the frontal beta was an 
examination of the EMG contamination of the signal. Since we were recording from the frontal areas, there was a 
great deal of concern as to whether subjects were activating the muscles of facial expression to generate cursor 
movement or if this was a "true" EEG signal. To address this, the BCI was modified so that the sampling rate for the 
signal was increased to 3 kHz and the LPF was adjusted up to 1 kHz. This allowed for a full examination of the 
spectra that not only included the EEG signal, but the EMG signal as well. The EMG signal has different signal 
characteristics, such as a peak amplitude in the spectral analysis between 80 to I 00 Hz and a large energy 
component in all frequencies up to 1 kHz, which would make identification of the EMG in the signal 
straightforward. Subjects were instructed to move the cursor as they normally would, and then to activate specific 
muscles to generate cursor movement. The voltages recorded from the entire scalp (represented by head 
topographies) and the spectra at the recording site were then compared under the different conditions. 

The study on the development and assessing the feasibility of an EEG-based controller has only been performed 
with one neuroprosthesis user. To achieve EEG control of hand grasp, the BCI system was modified to provide an 
output signal, which could then be converted into a command to control hand grasp. The movement of the cursor up 
generated a command to close the hand, while down movement opened the hand. The subject was given 30 minutes 
to adapt to the new controller, and was then asked to use this new controller to manipulate a fork, a cup, and a 

weight. 

Results 
The ability of the subjects to control the amplitude of the beta rhythm, as measured in the accuracy rate, is 

shown in Figure 1. The subjects have participated in anywhere from l O to 25 training sessions during an eight­
month period. The able-bodied subjects are given the designations AB-1 through AB-4, and the two neuroprosthesis 
users are given the designations NP-1 and NP-2. Five out of the six subjects were able to achieve excellent control, 
achieving accuracy rates well above 90%. One subject (AB-4) did not do as well as the other subjects, achieving 
only an 80% accuracy rate. The reason for this is believed to be due to the erratic training schedule of this subject. 
Subject AB-4 would participate in one session, and then due to scheduling conflicts, would be unavailable for 
training for another 2 weeks. Although long periods of time between sessions can be done once control is learned (4 
of our subjects have gone a period of 60 to 75 days between sessions with no effect upon control), this cannot be 
done during the initial training phase (first 7 - 9 sessions). Because of these scheduling conflicts, subject AB-4 was 

excluded from participation in the other studies. 
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Movement had little effect upon the subject's ability to control the EEG signal. From these data, it was 
concluded that the effect of extremity movement was insignificant (p > 0.5, repeated measures ANOV A using 
arcsine transformation of success rates). Neuroprosthesis operation also did not effect beta rhythm control. The 
overall accuracy rate for subject NP-1 when the neuroprosthesis was active was 93.5%, which was only 0.7% lower 
than the subjects average accuracy rate without the neuroprosthesis. 

Figure 2 shows the results from one of the subjects where the EMG contamination of the signal was 
investigated. Only two subjects (AB-1 and NP-1) have participated in this study to date. From the figure, it can be 
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seen that subjects are using the EEG signal to operate cursor movement. In the normal condition, the energy in the I!!!!'! 

spectra is restricted to between O and 45 Hz, and the voltage difference between the up and the down cursor 
movements are quite small in the beta band (between 0.2 and 0.5 microvolts). In comparison, the EMG exhibits 
energy in the entire frequency band up to 1 kHz, with a peak occurring between 80 and 100 Hz. The topographies in -
the figure, showing the voltages at the control frequency (27 Hz) of this subject also demonstrate that the EEG 
control is unilateral, focused only over a few sites, and of a low intensity. The EMG is bilateral, involving most of 
the scalp, and of much higher voltage intensity. The results seen in this subject are identical to those observed with -
the second subject. 

Topography - Normal 

Topography - Frontalis Activation 

Figure 2 - EMG Analysis 
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In the final study, the one neuroprosthesis user was able to effectively manipulate all three objects using the 
EEG-based controller with his current neuroprosthesis. However, the controller only allowed the subject to open and 
close the hand and not lock it in any one position. To maintain his grip upon an object, the subject had to maintain a 
high amplitude signal (up cursor movement) continuously, which became harder to do as che subject became tired. 

Conclusions 
The analysis of the data indicated that the use of the beta rhythm would be ideal for operation of the 

neuroprosthesis. Subjects have effectively demonstrated that they can achieve a high degree of accuracy with the 
signal, and can maintain this level of accuracy while generating voluntary movements or while Che neuroprostbesis 
is in operation. The answers to these questions were critical in determining if the EEG signal was feasible as a 
control source for the neuroprosthesis. The subsequent investigations into the contamination of the EEG signal by 
muscle activity would indicate that subjects are controlling the amplitude of the frontal beta rhythm and are not 
contracting the muscles of facial expression to control cursor movement. These findings only apply to two of the 
subjects to date, although it is expected to bold true once all of the remaining subjects participate in this study. The 
results from the initial attempt to operate hand grasp using the EEG signal demonstrates that this is a feasible option 
for controlling the neuroprosthesis. Further work is underway to allow for direct access to the EEG voltages and to 
develop algorithms to covert the EEG signal into neuroprosthetic control. This would allow subjects to maintain 
their bold upon an object for a long period of time, as well as to provide finer control over the amount of hand 
opening and closing (i.e. to achieve positions between fully open and fully closed). This controller will then be 
evaluated through a matched pairs comparison of performance in manipulating six standardized objects in a 
controlled environment (Grasp and Release Test), as well as through a more subjective measure of performance 
(user survey). 
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EEG-BASED COMMUNICATION: A PATTERN RECOGNITION 
APPROACH 

Abstract 

W. D. Penny•, S. J. Roberts a and M. J. Stokes b 

a Department of Electrical Engineering Imperial College, 
bResearch Department, Royal Hospital for Neuro-disability, 

The overall aim of this research is to develop an EEG-based computer interface for use by people with severe 
physical disabilities. The work comprises an 'offline' study and an 'online' study, the offline study establishing 
principles of interfacce design and the on line study putting those principles into practice. The work focuses on using 
EEG signals to drive one-dimensional cursor movements on a computer screen and our approach is characterised by 
our emphasis on pattern recognition methods rather than on biofeedback training. Two key technical features further 
define our approach: firstly, we use dynamic rather than static pattern recognition algorithms and, secondly, we infer 
not just the parameters of our classifier but also the uncertainty on those parameters. Both of these features result in 
more robust cursor control. 

1 Introduction 
The ultimate aim of this research is to develop an EEG-based computer interface for use by people with severe 

physical disabilities. This would, for example, facilitate interaction with a wordprocessor package or manjpulation 
of various environmental controls. Our work is inspired by the programme of research at the Wadsworth centre. In 
particular, the work reported by Wolpaw et al. [ 18] who used fixed features of the EEG (8-13Hz activity) to drive 
one-dimensional cursor movements on a computer screen. Subjects learn to drive cursor movements via a 
biofeedback process. Though successful, the process is rather long, taking up to several weeks before users can 
achieve the accuracy required for a practical communication device. Our approach relies less on biofeedback 
training and more on the use of pattern recognition methods, the idea being that the burden of communication be 

met by the user adapting to the computer and the computer adapting to the user. In this type of scheme, cursor 
movements are generated by the output of a pattern classifier such as a neural network. 

The approach is somewhat similar to that used in the Graz BCI [14] but is different in two important technical 
respects. Firstly, we infer not just the parameters of our classifiers (eg. weights in a neural net) but also the 
uncertainty on those parameters. This allows us to estimate the uncertainty associated with each subsequent 
classification. If the cursor is then allowed to move only for high confidence classifications the system has some 
ability to perform automatic rejection of muscle artifacts and automatic rejection of trials containing irrelevant 
cognitive components (eg. during lapses of concentration). Secondly, we use dynamic classifiers such that the cursor 
movement at a given time step is dependent on cursor movements at previous time steps. Both of these features lead 
to more robust cursor control [13, 16]. 

A further aspect of our work is an exploration of the cognitive tasks used to provide a starting point for 
communication. To date, we have looked at motor imagery and mental arithmetic tasks. This aspect of our work is 
similar to that of the Colorado group [6, 1] but is different both in the pattern recognition approach and in the 
particular choice of tasks. 

2 Offline studies 
Our research into EEG-based communication began in 1996. At that time, whilst there was some anecdotal 

evidence from biofeedback experiments [18, 14] to suggest that motor imagery can be identified from the 
background EEG, there were no formal experiments to suggest that this is indeed the case. Or indeed, any 
information on what proportion of subjects these patterns could be detected in or with what accuracy . 
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To clarify the situation we recorded EEG from seven subjects performing cued imagined hand movements [13]. 
Control recordings were also made to ensure we were not picking up stimulus-related activity. The EEG was 
recorded from a single reference electrode and two 11-electrode arrays placed over left and right sensorimotor 
cortex (a total of 23 electrodes). 

Laplacian operators were applied to estimate local activity at three sites over each sensorimotor cortex. Analysis 
of mu-rhythm power in the resulting signals showed that imagined hand movements could be identified in six out of 
seven subjects with a typical accuracy of 70%. The most discriminative electrode positions were found to be 3cm 
posterior to C3 and C4. Extraction of complexity features [15] showed that, in four out of seven subjects, imagined 
hand movements could be discriminated from background EEG activity with a typical accuracy of 80%. A 
comparison of classification accuracy using neural network versus logistic classifiers showed no benefit in using 
neural nets; logistic regression was sufficient [ 13). 

This research was usefu l in concretely establishing that motor imagery signals could be picked up by spectral 
features and that, in principle, they could be used to drive cursor movements. It also identified the best position to 
place a smaller number of electrodes. Similar findings have also been made in recent research by McFarland et al. 
[8]. 

3 Online system 
Whilst the above research established possible principles of EEG-based communication a number of practical 

issues remained. Firstly, the pattern recognition must be implemented online. But due to the yearly doubling of 
computer speed this is one of the lesser problems. Secondly, we would like to use a small number of electrodes and 
thirdly we would like to have a free-running communication protocol (self-paced movements) rather than 
communicating in response to a cue (although this last point is something of an open issue). 

These factors have influenced the design of our EEG-based interface. It uses only three electrodes, a single 
isolation amplifier and a 266Mhz PC. The electrodes are placed at C3' - C4' (3cm behind C3 and C4 in the 10/20 
system) and a reference electrode is placed over the right mastoid. 

In experiments with the interface the communication protocol is as fo llows. Subjects move a cursor up or down 
a computer screen in order to hit targets that appear either at the top or at the bottom. The number of discrete cursor 
positions and other details are identical to that described in (18]. These details are not important, however, as to 
date, we choose to analyse the data on a segment-by-segment basis (see later). 

Subjects move the cursor by performing different cognitive tasks and are given a maximum of ten seconds to hit 
each target. We have also carried out experiments where the cursor does not move. We have tried two different pairs 
of cognitive tasks; (i) motor imagery versus a baseline task and (ii) motor imagery versus a maths task. For the 
motor imagery tasks subjects were asked to imagine opening and closing their hand (right or left according to 
handedness), and for the maths tasks subjects were asked to serially subtract seven from a large number. Further 
experimental details are available in [ 12]. 

Cursor movements were generated by extracting autoregressive (AR) features from the EEG and classifying 
them using a logistic regression model. Specifically, a fagged- autoregressive' (LAR) model was applied to short­
overlapping windows of data. LAR models can pick up relevant changes in EEG signals in whatever frequency band 
they occur and, in our experience, are superior to AR models in being less sensitive to noise [12]. 

3.1 Handling uncertainty 
The LAR features are classified using a logistic regression model trained using the Bayesian evidence 

framework [7]. This procedure estimates both the classifier weights and the distribution of those weights. The 
distribution captures the fact that the classifier is not entirely certain as to how to classify some inputs. If this 
uncertainty is taken into account when making a new prediction (as it should be) then the correct predictive output 
to use is the 'moderated' output. Moderation in a two-class problem changes the output to a value nearer to 0.5 (the 
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class prior) by an amount which is proportional to the uncertainty on the weights. Moderated outputs are typically 
better than unmoderated outputs in terms of the likelihood of predictions [7]. It is possible to make even more robust 
cursor movements by choosing to not move the cursor if the classifier output is not sufficiently different to 0.5. This 
is known as ' rejection ' . 

3.2 Dynamic models 
For EEG data, averaging classifier outputs over a number of consecutive data segments is known to significantly 

increase classification accuracy [1]. This is known as ' temporal smoothing'. One approach to temporal smoothing is 
to average classifier responses not in the output space, but in the space of activations, or the ' latent' space. This 
scheme arises from considerations of how to make optimal decisions in a 'committee' of classifiers [9] where each 
committee member makes a prediction from a different time point. Optimal smoothing periods can be estabJished 
via cross-validation; a typical period is two seconds . 

Temporal smoothing can also be achieved with a Hidden Markov Model (HMM) [10]. HMMs have a number of 
discrete states (eg. one for cursor up and one for cursor down) each of which is associated with particular 
characteristics of the data. In our case, these would be spectral characteristics as captured by an LAR model. 
Transition from the current state, i , to a new state,) is determined by (i) the state transition probability Pu and (ii) the 
characteristics of the new data point (eg. LAR vector). The amount of temporal smoothing is determined implicitly 
by the matrix of state transition probabilities and, importantly, these can be learnt from the data set. 

3.3 Results 
We report results from online experiments by analysing the EEG data on a segment-by-segment basis (we could 

measure the proportion of targets hit but this would tie the results rather strongly to the details of the particular 
communication protocol which is yet to be optimised) . Figure I shows classification accuracies on seven subjects 
for (a) stationary cursor recordings and (b) moving cursor recordings for two pairs of cognitive tasks. In the moving 
cursor trials four out of seven subjects achieved at least 75% accuracy. 

Once we have trained a classifier to discriminate between two different cognitive tasks on the basis of LAR 
features it is interesting to then go back and look at what are the typical LAR features and corresponding spectra 
associated with each task. This is equivalent to the enhanced averaging method described by Gevins and Morgan 
(5). 
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Figure 2 shows enhanced spectra for subject 5 performing the imagery versus maths pairing. This is quite 
representative of all the subjects with the majority of differential activity in the mu-band (8-13 Hz). Some subjects 
also showed differences in the theta (4-7 Hz) and beta (14-20 Hz) bands. 
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Figure 2: Enhanced spectra for subject five performing motor imagery 
and maths tasks. 
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4 Discussion and future plans iw-, 

We note that four out of the seven subjects achieved at least 75% accuracy in the moving cursor trials. They 
would therefore be able to immediately use a wordprocessor package via our EEG-based interface using, for 
example, the protocol developed by Birbaumer et al. [4]. Two of these subjects would use an imagery versus 
baseline strategy and the other two imagery versus maths. 

But what of the other three subjects and what of interfacing with other devices ( wheelchair control, for example, 
may require much better than 75% accuracy) ? As the present technology stands they would not be able to use the 
interface but we can see the technology improving by following one of two distinct research paths . 

Firstly, we could persevere with methods involving little or no biofeedback training and focus on other ways of 
improving classification accuracy. One method might be to also use 'readiness' potentials (RPs) [2] or 'slow cortical 
potentials' [4]. Recent research shows that RPs and spectral changes (mu-rhythm desynchronization) are 
uncorrelated [17]. The RPs would therefore provide an additional source of information. A second method is to look 
at using additional features such as complexity [ 15] or to pre-process the signals in more adventurous ways eg. using 
an Independent Component Analysis embedding [3]. A third method is to use HMMs. HMMs have not, as yet, been 
applied to the whole database but qualitative results on one subject suggest the approach is promising. The main 
strength of HMMs is in analysing sequences of data (via Viterbi decoding). We therefore envisage that HMMs can 
best be utilised by retrospectively analysing sequences of intended cursor movements in order to better decode the 
transmjtted message. Use can also be made of error-correcting codes. 

Secondly, we could train subjects using a biofeedback approach. This involves the interaction of two adaptive 
controllers; the user and the computer. One promising approach for handling this is to use nonstationary 
classification algorithms [11) which acknowledge that the statistics of each class (ie. how the user moves the cursor 
up or down) can change with time. 
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software and to test the resulting system on a large number of normal subjects. The interface will then be tested on 
patients having severe neurological disabili ties but known to be cognitively aware . 
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Cognitive Tasks for use with Brain-computer Interface Systems 

Eleanor A. Curran 1, Maria J. Stokes1. William G. Penny2 
J. Research Department, Royal Hospital for Neuro-Disability, London 

2. Department of Electrical Engineering, Imperial College, University of London 

The current project in EEG-based brain-computer interface aims at both reducing the training time of subjects 
and developing protocols that can be used by a wider group. Recent studies in the US (Wolpaw et. al.), have shown 
that subjects can be trained to achieve control of a cursor on a screen by adapting their thoughts to alter the mu 
rhythm in appropriate ways. The current study trains subjects to achieve cursor control by performing two types of 
cognitive task; one associated with movement planning and imagery and the other with mental arithmetic. The aim 
of this study is to assess whether refining and improving instructions for the subjects re: the cognitive tasks, would 
contribute to the achievement of more efficient cursor control. 

The subjects are required to perform cognitive tasks that demand both concentration and clarity of thought. This 
assumes a high level of control of mental states and processes on the part of the subject. The subjects' training time 
may be reduced if we can find ways to make the control of the cognitive tasks easier to achieve. There is support in 
the literature covering previous studies for making the instructions on cognitive tasks more specific in order to help 
the subjects to move the cursor (Wolpaw et. al., 1991). 

One way of making the instructions more specific would be to break down the cognitive tasks into components 
and test them separately to see: 

a. which components or combinations of components are most effective in producing di scernible EEG signals 
and 
b. which mental states and processes are easiest for subjects to control. 

In the 'imagined hand movement' task, where motor imagery is used to generate the EEG signals, it is possible 
to describe the task in at least the following ways : 

1. imagine hand moving 
2. remember the feeling of hand moving 
3. plan to move hand 
4. intend to move hand (while at the same time ensuring that it does not move) 
5. picture a hand moving 

There is some evidence for drawing a distinction between the use of a first person perspective (2.) and the use 
of a third person perspective (5.) (Decety 1996). T he literature on this and other possible distinctions w ill be 

explored at this review stage. 

There are also other mental states that may be relevant to achieving cursor control. These include notions, used 
by philosophers in discussions of voluntary action, such as 'will' and 'intention ', (Decety and Ingvar 1990, Decety 
1996). 

Following the literature, the cognitive tasks will be investigated further and ways of improving them will be 
explored in preparation for the 'hands-on' study. 
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COGNITIVE NEUROSCIENCE LABORATORY 

J. A. Pineda, Ph.D. 
Department of Cognitive Science, University of California, San Diego 

Research Collaborators 
Brendan Allison, Eric Altschuler, Aimee Arnoldussen, Chris Harris, Jordan Hughes, Ty Phimmasone, David 
Silverman, David Simard, Andrey Vankov, Victor Wang 

1.0Goals 
Our initial interest in BCI-related work is to record movement-related electrophysiology (Mµ Rhythm, 

Readiness Potentials) and develop real-time recognition of EEG patterns in order to interface with machines and do 
practical work. 

2.0 Current Work 
2.1 Study I: Effects of Self-movement, Observation, and Imagination on Mµ Rhythm 
2.1.1 Introduction 

The human mµ EEG rhythm is recorded in the 8-13 Hz range from the central region of the scalp overlying the 
motor cortices. This rhythm is large when a subject is at rest, and is well-known to be blocked or attenuated by self­
generated movement. Indeed, the mµ wave is hypothesized to represent an "idling" rhythm of motor cortex that is 
interrupted when movement occurs. In this study, we show that the mµ wave is also attenuated when a subject 
observes a movement or when the subject imagines making the same, self-generated movement. According to 
Rizzolatti and colleagues, the responsiveness of the mµ wave to visual input may be the human electrophysiologic 
analog of a population of neurons in area F5 of the monkey premotor cortex (Fadiga et al., 1995). These cells 
respond both when the monkey performs an action and when the monkey observes a similar action made by another 
monkey or by an experimenter. Older studies have reported that a mµ-like wave is blocked by thinking about 
moving. For example, individuals with amputated limbs can block this rhythm by thinking about moving the 
amputated limb. The blocking of the mµ rhythm by visual and imagery input may have implications for 
understanding movement-related responses and for the rehabilitation of movement-related neurological conditions. 

2.1.2 Methods 
Subjects were 17 healthy volunteers (10 men, 7 women; age range 19-58 with a mean of 27.7 years). Most 

subjects were students or employees at the University of California, San Diego and naive to the purposes of the 
experiment. Only JO subjects were used for statistical analysis because of problems with noise. 

EEG signals were recorded from 6 electrodes placed over frontal (F3, F4), central (C3, C4), and occipital (01, 
02) sites according to the standard 10-20 International Electrode Placement System. Blinks and eye movements 
were monitored with an electrode in the bony orbit dorsolateral to the right eye. EEG was amplified by a Grass 
model 7D polygraph using 7P5B pre-amplifiers with bandpass at 1 and 35 Hz. EEG was digitized on-line for two 
minutes at a sampling rate of 256 Hz. 

Subjects participated in four conditions: 1) rest: in which no particular task was required; 2) self-generated 
movement: subjects were asked to move their opposing thumb to middle fingers of the right hand ("duck" 
movement); 3) observation: subjects watched a confederate of the experimenter perform the "duck" movement; and 
4) imagination: subjects were instructed to imagine performing the self-generated "duck" movement. The 
confederate faced the subject who was seated approximately four feet away throughout all conditions of lhe 
experiment. 

2.1.3 Results/Discussion 
During the rest condition, subjects exhibited significant power in the 8-13 Hz frequency range. This rhythm 

showed statistically significant changes during the various conditions (F(3,27)=4.98, P<0.01). · Pairwise 
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comparisons showed that the main differences were a reduction in power during the self-generated movement and 
the observation conditions. Post-hoc analysis of the data showed that during the imagination condition, mµ power 
decreased at frontal sites but was less affected at central and occipital sites (site x condition, (F( 15, 135)=2.22, P< 
0.01). 

2.1.4 Literature Cited 
Fadiga, L.; Fogassi, L.; Pavesi, G.; Rizzolatti, G. (1995) Motor facilitation during action observation: A magnetic 
stimulation study. Journal of Neurophysiology, 73 (6): 2608-2611. 

2.2 Study 2: Readiness Potentials (RPs) and Mµ Rhythm Changes to Spontaneous Overt Single and 
Multiple Limb Movements 

2.2.1. Introduction 
The imagination or performance of a movement is generally accompanied by a readiness potential (RP; also 

called Bereitshaftspotenlial or BP) which is most prevalent over cortical motor areas. The free running EEG also 
shows characteristic changes in mµ activity which are unique for movements of different limbs. These findings 
have proven useful in the construction of BCI systems based on movement related changes in mµ activity. 

Numerous studies have explored the RPs and mµ changes associated with single movements of the finger and 
hand. However, the electrophysiology of left and right foot movement, and those preceding the voluntary 
simultaneous movement of multiple limbs, have not been thoroughly explored. This information is necessary to 
better understand how the brain's activity gives rise to different movements, and also expands the range of input 
signals which could be used in a BCI. 

This study recorded EEGs from human subjects performing voluntary movements of either one limb or two 
limbs at self paced intervals. Results confirmed that each type of movement is associated with unique EEG 
characteristics which could be categorized artificially. 

2.2.2 Methods 
A total of 18 subjects (mean age 23.7 +/- 2.8) were run in this experiment. Seven subjects were female and 3 of 

the female subjects and two males were left handed. Most were undergraduate students at UC San Diego and were 
compensated with either credit toward an undergraduate course or monetary payment. All subjects were nati ve 
English speakers with no sensory or motor deficits and no history of psychological disorder. Subjects signed a 
consent form and research was approved by the Human Subjects Committee at UC San Diego. 

EEG activity was recorded monopolarly with Ag/AgCI electrodes over nine sites: F3, Fz, F4, C3, Cz, C4, P3, 
Pz, and P4 (according to the International 10-20 system of electrode placement), referenced to linked mastoids. All 
scalp sites had were amplified 10,000 times and bandpass was .1-100 Hz. EOG activity was recorded through an 
electrode placed over the right orbital bone. Eye activity was magnified 5,000 times and filtered from .3-100 Hz. All 
electrode sites had an impedance of Jess than 5 kOhms. Subjects' hand movements were detected through two 
joysticks (Gravis), while a foot pedal device (CH Products) recorded foot movements. All data (subjects' 
movements and electrode data) were sampled at 256 Hz and were recorded using the ADAPT software package. 

In single movement trials, subjects performed 10 minute long trial blocks during which they made voluntary 
movements of either hand or foot with at least a five second delay between movements. The movements could be of 
any one limb, and they were instructed not to worry about randomizing which limb was moved or ensuring a fair 
distribution of different limb movements. Instructions were identical for multiple movement trials except that 
subjects were asked to move any two limbs simultaneously. 

2.2.3 Results 
The data obtained in this study remain under investigation. It is clear that the RPs preceding 2 types of 

combined movement (left foot/right hand movement and right foot/left hand movement) have a significantly larger 
peak amplitude than any other single or combined movement. In addition, each of the four single movement types 
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show unique RP and mµ rhythm characteristics. Research is currently directed toward further data analysis and 
toward exploration of different mechanisms of artificially categorizing the different movement types. 

3.0 Future Work 
3.0 Classification of RPs using Thoughform (a proprietary software) and other techniques (e.g., PCA, lCA). 
3.1 RPs to imagined single and multiple movements. 
3.2 Classification of signals using neural networks. 
3.3 Detect changes in biorhythm signals, e.g., sleep-wake cycles. 
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BRAIN-COMPUTER INTERFACE RESEARCH 
AT THE WADSWORTH CENTER 

J.R. Wolpaw, D.J. McFarland, T.M. Vaughan 
Laboratory of Nervous System Disorders, Wadsworth Center 

New York State Department of Health and State University of New York 

Limitations of Conventional Augmentative Communication and Control Technologies 
People who are paralyzed or have other severe movement disorders need alternative methods for 

communication and control. Currently available augmentative communication methods require some muscle 
control. Whether they use one muscle group to supply the function normally provided by another (e.g., use 
extraocular muscles to drive a speech synthesizer) or detour around interruptions in normal pathways (e.g., use 
shoulder muscles to control activation of hand and forearm muscles (7)), they aJI require a measure of voluntary 
muscle function. Thus, they may not be useful for those who are totally paralyzed (e.g., by amyotrophic lateral 
sclerosis (ALS) or brainstem stroke) or have other severe motor disabilities. These individuals need an alternative 
communication channel that does not depend on muscle control. They need a method to express their wishes that 
does not rely on the brain's normal output pathways of peripheral nerves and muscles. 

Possible Direct Modalities 
A variety of non-invasive methods are now available Lo monitor brain function. These include 

electroencephalography (EEG), magnetoencephalography (MEG), positron emission tomography (PET), and 
functional magnetic resonance imaging (fMRI). PET, fMRI, and MEG are technically demanding and expensive. 
At present, only EEG, which is easily recorded with simple equipment and reflects changes in function at rates of 5-
10 Hz or higher, appears to offer the practical possibility of a new non-muscular communication channel. 

Using EEG for Communication 
The EEG is an extremely complex signal, reflecting the electrical fields produced by many trillions of 

individual synaptic connections in the cortex and in subcortical structures. It is also an extremely degraded signal, 
due to the complex anatomy and electrical characteristics of the cranium. Most important, it is an extremely 
variable signal. While the brain can produce a given motor performance again and again with very little apparent 
variation, the brain activity underlying that output, the activity in the many different groups of neurons that 
contribute to it, varies substantially from performance to performance. As a result, the EEG associated with a given 
output also varies from performance to performance. The combined effect of these factors is that any effort to 
d e te rmine the brain's intentions from the EEG in a detailed fashion is probably unrealistic and doo m e d to failure. 
While relatively gross categories of brain function may be differentiated, detailed analysis is probably not possible 
in the foreseeable future. 

A variety of studies over the past 60 years prompted an alternative approach (25). These studies indicated that 
people can learn to control certain components of the EEG. They suggested that it might be possible to change the 
normal re lationship between brain function and EEG. Normally, EEG signals reflect brain function, but are not 
thought to be necessary for that function; they are essentially noise produced by the brain in the course of its 
operations. However, if people could learn rapid and accurate control of EEG components, the EEG could be 
converted from noise into a new output signal, a signal that could communicate a person's wishes to an external 
device. 

Possible Methods for EEG-based Communication 
EEG activity recorded at the scalp consists of voltage changes of tens of microvolts at frequencies ranging from 

below 1 Hz to about 50 Hz. It can be analyzed and quantified in the time domain, as voltage versus time, or in the 
frequency domain, as voltage or power versus frequency. Both forms of analysis can be used for EEG-based 
communication. In the time domain, the form or magnitude of the voltage change evoked by a stereotyped stimulus, 
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referred to as an evoked potential or evoked response, can serve as a command. For example, the evoked potential 
produced by the flash of a certain letter can indicate whether the user wants to select that letter (3, 18). In the 
frequency domain, the amplitude of the EEG in a particular frequency band, referred to as a rhythm, can function as 
a command. For example, that amplitude can be used to control movement of a cursor on a computer screen 
(4,1 1,14,22,24-26). 

Mu and beta rhythms 
The brain-computer interface (BCI) laboratory at the Wadsworth Center has focused on using 8-12 Hz mu and 

13-28 Hz beta rhythms in the scalp-recorded EEG for communication (11-13,24-26). These rhythms are produced 
in sensorimotor cortex and associated areas. We chose them because they are produced in those areas most directly 
related to movement, and because previous studies suggested that people could learn to control their ampl itude 
(11 ,25). 

In our standard protocol, people with or without motor disabilities learn to control mu or beta rhythm amplitude 
and use that control to move a cursor in one or two dimensions to targets on a computer screen. Figure 1 
summarizes the protocol. Users learn over a series of sessions to control cursor movement. Various kinds of mental 
imagery are helpful in the initial stages. As training proceeds, imagery usually becomes less important. Figure 2 

illustrates the control achieved by a user. While EEG from only one or two scalp locations is used to control cursor 
movement online, we gather data from 64 locations for later offline analysis (i.e., Figures 3 and 4). This analysis 
defines the full topography of EEG changes associated with target position and helps develop improvements in 
online operation. 

Fig. 1. A: BCI operation. For simplicity, only one EEG 
channel is shown. Scalp voltage is amplified, digitized, A ~ ~ ~ 
spatially filtered, and frequency analyzed IO times/sec. -;c: ·~ -=-
Amplitude in a specific frequency band is translated into 
cursor movement. This is performed by foreground and / \ / \ll \ 
~sir~~~i:rit:~~e~.n the digital signal processing I+ ....... ~~.... 

1

·~. .:.:.~. ,. ,.,A~ .. =:-·t. 

1 

?===?i 
B: Three different control modes. On the left is the basic ·~ .. .. . . 
one-dimensional mode in which the target is o.n the top , 1 ··,i 1,; ~ 
or bottom edge and the cursor, which begins in the 1 

1
' 

1
' •• ,'.'i~. V-.,1, 

middle, moves verticaJly controlled by the EEG until it . 
reaches the top or bottom edge. In the middle is the two­
dimensional mode, in which the target is at one of four 
or more positions on the periphery of the screen and the 
cursor moves both vertically and horizontally controlled 
by the EEG until it reaches the periphery. On the right 
is the graded one-dimensional mode, in which the target 
is the highlighted box of a series of boxes arranged 
vertically on the screen and the cursor begins in the 

Frequency / / . . . . . . 
/ / . . 

,' / ... .. 
',/ 

middle and moves vertically controlled by the EEG until 8 
it stays in one box for a defined period ( e.g., one sec) and 
thereby selects it. 
C: Sequence of events during a trial. 1: The trial begins 
when a target appears in one corner. 2: After a brief 
period (e.g., one sec) that allows the subject to see the 
location of the target and initiate the proper EEG, the 

oorn 
cursor appears in the center. 3: The cursor moves C 
controlled by the EEG until it reaches the periphery. 4: 
If it reaches the part occupied by the target, a hit is 
registered, the cursor disappears, and the target flashes 
for one sec as a reward. If it reaches another part, a miss 
is registered, the target disappears, and the cursor 
remains fixed on the screen for one sec. 5: The screen 
is blank for one sec. 6: The next target appears. 
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Fig. 2. A: Frequency spectra of EEG recorded over sensorimotor cortex of a trained 
subject when the target is at the bottom (solid) or at the top (dashed) of the video screen. 
The main difference between the two spectra is in the 8-12 Hz mu rhythm band (and, 
to a lesser extent, in an 18-23 Hz beta rhythm band). Differences at other frequencies 
are absent or minimal. B: Sample EEG traces accompanying top or bottom targets. 
The mu rhythm is prominent with the top target, and minimal with the bottom target. 
(From Ref. 25.) 

109 

-

... 

-
-

-
-

• 



• 

• 

• 

• 

• 

.. 

-
-
-

-

-

Figure 4 illustrates the topographic and spectral specificity achieved by two representative users (r is the 
proportion of the total variance of the signal accounted for by target position, and thus indicates the user's level of 
EEG control). Control is sharply focused over sensorimotor cortex and in 1he mu and/or beta rhythm frequency 
bands. With this control, users can move the cursor to answer spoken yes/no questions with accuracies greater than 
95% (13). Users can also achieve independent control of two different mu or beta rhythm channels and use that 
control to move a cursor in two dimensions (26). 

Recent studies 
Our recent work has focused on realization of a general purpose EEG-based BCI system suited for developing 

and studying EEG control and for determining the best methods for translating it into device control (11,23). The 
key feature of this system is recognition and use of the principle that EEG-based communication depends on 
successful interaction of two adaptive controllers: the system user who produces EEG control and the BCI system 
which translates that control into device control. 

With this laboratory system, we have also sought to delineate the topographical, spectral, and temporal 
characteristics of the 8-12 Hz mu rhythms used in our initial BCI studies. These rhythms are usually focused near 
the midpoint of the central sulcus bilaterally. In trained users, they respond to command within 0.5 sec (22), and 
are associated with J 8-25 Hz beta rhythms which in some users may be better control signals (e.g., Figure 4A). The 
locations and frequencies that provide optimal control may vary within days and between days, particularly early in 
training . 

Another objective has been improvement in the algorithm lhat translates EEG control into device control. 
These improvements include: spatial filters that match the spatial frequencies of the user's mu or beta rhythms, 
autoregressive frequency analysis which gives higher resolution for short time segments and thus permits more 
rapid device control, and better selection of the intercepts and gains in the equations that translate EEG control into 
device control (1 1,12,15). 

In ongoing studies, we are seeking additional frequency-domain EEG rhythms that are susceptible to control. 
Topographically distinct rhythms may be controlled simultaneously, so that one increases when the other decreases 
(20). Of particular interest is a rhythm recorded over parietooccipital cortex (10). This rhythm might be combined 
with mu or beta rhythms to provide several independent control channels. 

We have also conducted studies indicating that EEG-based communication is not associated with and does not 
depend on peripheral muscle activity ( J 9). This demonstration is an important step in establishing EEG-based 
communication as a new communication channel for those who lack voluntary muscle control. 

Most recently, we have begun to evaluate the possible contributions to control of time-domain EEG 
components. Mu and beta rhythm control may be associated with slow cortical potential activity comparable to that 
which Birbaumer and his colleagues have shown to be useful for communication (1,2,8). A collaborative effort 
with these investigators is focused on determining whether frequency-domain control based on mu and beta rhythms 
can be combined with time-domain control based on slow potentials to yield better EEG-based communication. 
Another time-domain component might provide a method for detecting errors in communication. 

Finally we are exploring several practical applications for EEG-based communication and control. The 
Wadsworth BCI system can be used to answer simple questions and to select items from a screen menu, and appears 
capable of operating the "Freehand" neuroprosthesis which provides hand-grasp control to people with cervical 
spinal cord injuries (7,9,13,27). 

Present goals 
Over the next several years, we will evaluate three hypotheses: 1) that increasing the adaptibility of the online 

algorithm will increase the accuracy and speed of communication, 2) that time-domain EEG components can 
supplement and improve the control now provided by frequency-domain components, and 3) that the EEG-based 
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Fig. 3. The 
standard 64 scalp 
electrodes (from 
Ref. 1 7) used by 
the. laboratory BCI 
sy s tem. The 
subject's nose is at 
the top. Whileonly 
a few electrodes 
con trol cursor 
movement online, 
activity from all 64 
is stored for later 
analysis. All 
electrodes are 
recorded versus an 
ear ref ere nee so 
that spatial filters 
can be applied 
after digitization. 

Fig. 4. Topographical and spectral foci of control in two subjects. The r2 color 
topography in A is for the beta frequency band and that in Bis for the mu band. Subject 
A has bilateral foci near the midpoint of the central suld. The r2 spectra show that the 
sum (solid) of the tight (dashed) and left (dotted) beta rhythm amplitudes, which 
controlled the cursor, has a higher r2 value than either amplitude alone, and thus is a 
better control signal. (Note that the subject also has control in the mu rhythm band.) 
In contrast, Subject B, who is a 25 year-old man with severe cerebral palsy who now 
communicates very slowly with a touch-talker, controls the cursor with a mu rhythm 
focused in the midline just posterior to the vertex. 
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BCI can provide cursor-based menu selection and operate a neuroprosthesis. In accord with these hypotheses, we 
plan three sets of studies. 

First, we will expand the online algorithm to include automatic selection of optimal EEG components, optimal 
electrode locations and frequencies for these components, optimal spatial filters, and optimal gai n; and will assess 
the benefits of these modifications. We expect that these changes will improve translation of the user's EEG 
control into device control, and will also facilitate user training and thereby increase the level of EEG control 
achieved. The goal is to incorporate into the online algorithm important aspects of analyses previously performed 
offline . 

Second, we will try to supplement the control provided by mu and beta rhythms with that provided by other 
frequency-domain components and by time-domain components such as slow cortical potentials and error-related 
potentials. This aim combines the two prevailing methods of EEG-based communication, use of frequency-domain 
components and use of time-domain components. We expect that this combination will improve the system's 
detection of the user's commands. 

Third, we will try to demonstrate the practicality and usefulness of EEG-based communication. We will 
evaluate several different methods by which the BCI can support cursor-based letter or icon selection. One method 
uses simultaneous control of horizontal and vertical cursor movements; the other uses sequential control (i.e., 
vertical movement to select a row followed by horizontal movement to select a column). We will also continue to 
contribute to application of the interface to operation of the "Freehand" neuroprosthesis that provides hand grasp 
function to people with cervical spinal cord injuries (7). We expect that this commercially available prosthesis, 
which is presently controlled by shoulder muscles, can also be controlled by EEG (9). This demonstration would 
expand the population of potential users. 

In summary, we plan to improve the re liability, speed, and versatility of the current EEG-based BCI by 
increasing the adaptibility of the online algorithm and incorporating additional frequency-domain and time-domain 
control signals. We also plan to demonstrate its applicability to several important communication and control tasks. 

Conclusions 
The continued development of EEG-based communication depends on progress in three crucial areas. First, the 

EEG components, whether time-domain or frequency-domain, that people are best able to control must be fully 
characterized and improved methods for detecting and measuring them must be developed (e.g., (12)). Second, the 
methods used to translate these measurements into device control, e.g., movement of a cursor, prosthesis activation, 
or Jetter selection, must be optimized. Third, the fact that EEG-based communication inevitably involves the 
interaction of two adaptive controllers - the system and the user - must be recognized and accomodated. 
Improvements in training methods and delineation of reliable techniques for maintaining stable interaction beyond 
initial training are essential. 
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